|试卷下载
终身会员
搜索
    上传资料 赚现金
    江苏省常州市五年(2018-2022)中考数学真题题型知识点汇编:06解答题提升题
    立即下载
    加入资料篮
    江苏省常州市五年(2018-2022)中考数学真题题型知识点汇编:06解答题提升题01
    江苏省常州市五年(2018-2022)中考数学真题题型知识点汇编:06解答题提升题02
    江苏省常州市五年(2018-2022)中考数学真题题型知识点汇编:06解答题提升题03
    还剩18页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省常州市五年(2018-2022)中考数学真题题型知识点汇编:06解答题提升题

    展开
    这是一份江苏省常州市五年(2018-2022)中考数学真题题型知识点汇编:06解答题提升题,共21页。

    (1)求点A的坐标;
    (2)若四边形ABOC的面积是3,求一次函数y=kx+b的表达式.
    二.二次函数综合题(共3小题)
    2.(2022•常州)已知二次函数y=ax2+bx+3的自变量x的部分取值和对应函数值y如下表:
    (1)求二次函数y=ax2+bx+3的表达式;
    (2)将二次函数y=ax2+bx+3的图像向右平移k(k>0)个单位,得到二次函数y=mx2+nx+q的图像,使得当﹣1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小.请写出一个符合条件的二次函数y=mx2+nx+q的表达式y= ,实数k的取值范围是 ;
    (3)A、B、C是二次函数y=ax2+bx+3的图像上互不重合的三点.已知点A、B的横坐标分别是m、m+1,点C与点A关于该函数图像的对称轴对称,求∠ACB的度数.
    3.(2020•常州)如图,二次函数y=x2+bx+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,抛物线过点C(1,0),且顶点为D,连接AC、BC、BD、CD.
    (1)填空:b= ;
    (2)点P是抛物线上一点,点P的横坐标大于1,直线PC交直线BD于点Q.若∠CQD=∠ACB,求点P的坐标;
    (3)点E在直线AC上,点E关于直线BD对称的点为F,点F关于直线BC对称的点为G,连接AG.当点F在x轴上时,直接写出AG的长.
    4.(2018•常州)如图,二次函数y=﹣+bx+2的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C不重合).
    (1)b= ,点B的坐标是 ;
    (2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在,求出点P的横坐标;若不存在,请说明理由;
    (3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.
    三.作图—复杂作图(共1小题)
    5.(2018•常州)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.
    (2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.
    ①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);
    ②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?
    四.作图-旋转变换(共1小题)
    6.(2020•常州)如图1,点B在线段CE上,Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.
    (1)点F到直线CA的距离是 ;
    (2)固定△ABC,将△CEF绕点C按顺时针方向旋转30°,使得CF与CA重合,并停止旋转.
    ①请你在图1中用直尺和圆规画出线段EF经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法).该图形的面积为 ;
    ②如图2,在旋转过程中,线段CF与AB交于点O,当OE=OB时,求OF的长.
    五.解直角三角形的应用(共1小题)
    7.(2018•常州)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH的长).
    六.列表法与树状图法(共1小题)
    8.(2018•常州)将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.
    (1)搅匀后从中摸出1个盒子,求摸出的盒子中是A型矩形纸片的概率;
    (2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).
    参考答案与试题解析
    一.反比例函数与一次函数的交点问题(共1小题)
    1.(2018•常州)如图,已知点A在反比例函数y=(x>0)的图象上,过点A作AC⊥x轴,垂足是C,AC=OC.一次函数y=kx+b的图象经过点A,与y轴的正半轴交于点B.
    (1)求点A的坐标;
    (2)若四边形ABOC的面积是3,求一次函数y=kx+b的表达式.
    【解答】解:(1)∵点A在反比例函数y=(x>0)的图象上,AC⊥x轴,AC=OC,
    ∴AC•OC=4,
    ∴AC=OC=2,
    ∴点A的坐标为(2,2);
    (2)∵四边形ABOC的面积是3,
    ∴(OB+2)×2÷2=3,
    解得OB=1,
    ∴点B的坐标为(0,1),
    依题意有,
    解得.
    故一次函数y=kx+b的表达式为y=x+1.
    二.二次函数综合题(共3小题)
    2.(2022•常州)已知二次函数y=ax2+bx+3的自变量x的部分取值和对应函数值y如下表:
    (1)求二次函数y=ax2+bx+3的表达式;
    (2)将二次函数y=ax2+bx+3的图像向右平移k(k>0)个单位,得到二次函数y=mx2+nx+q的图像,使得当﹣1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小.请写出一个符合条件的二次函数y=mx2+nx+q的表达式y= y=﹣x2+6x﹣5(答案不唯一) ,实数k的取值范围是 4≤k≤5 ;
    (3)A、B、C是二次函数y=ax2+bx+3的图像上互不重合的三点.已知点A、B的横坐标分别是m、m+1,点C与点A关于该函数图像的对称轴对称,求∠ACB的度数.
    【解答】解:(1)将(﹣1,4),(1,0)代入y=ax2+bx+3得:

    解得,
    ∴二次函数的表达式为y=﹣x2﹣2x+3;
    (2)如图:
    ∵y=﹣x2﹣2x+3=﹣(x+1)2+4,
    ∴将二次函数y=﹣x2﹣2x+3的图像向右平移k(k>0)个单位得y=﹣(x﹣k+1)2+4的图象,
    ∴新图象的对称轴为直线x=k﹣1,
    ∵当﹣1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小,且抛物线开口向下,
    ∴3≤k﹣1≤4,
    解得4≤k≤5,
    ∴符合条件的二次函数y=mx2+nx+q的表达式可以是y=﹣(x﹣3)2+4=﹣x2+6x﹣5,
    故答案为:y=﹣x2+6x﹣5(答案不唯一),4≤k≤5;
    (3)如图:
    ∵点A、B的横坐标分别是m、m+1,
    ∴yA=﹣m2﹣2m+3,yB=﹣(m+1)2﹣2(m+1)+3=﹣m2﹣4m,
    ∴A(m,﹣m2﹣2m+3),B(m+1,m2﹣m),
    ∵点C与点A关于该函数图像的对称轴对称,而抛物线对称轴为直线x=﹣1,
    ∴=﹣1,AC∥x轴,
    ∴xC=﹣2﹣m,
    ∴C(﹣2﹣m,﹣m2﹣2m+3),
    过B作BH⊥AC于H,
    ∴BH=|﹣m2﹣4m﹣(﹣m2﹣2m+3)|=|﹣2m﹣3|,CH=|(﹣2﹣m)﹣(m+1)|=|﹣2m3|,
    ∴BH=CH,
    ∴△BHC是等腰直角三角形,
    ∴∠HCB=45°,即∠ACB=45°.
    3.(2020•常州)如图,二次函数y=x2+bx+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,抛物线过点C(1,0),且顶点为D,连接AC、BC、BD、CD.
    (1)填空:b= ﹣4 ;
    (2)点P是抛物线上一点,点P的横坐标大于1,直线PC交直线BD于点Q.若∠CQD=∠ACB,求点P的坐标;
    (3)点E在直线AC上,点E关于直线BD对称的点为F,点F关于直线BC对称的点为G,连接AG.当点F在x轴上时,直接写出AG的长.
    【解答】解:(1)∵抛物线y=x2+bx+3的图象过点C(1,0),
    ∴0=1+b+3,
    ∴b=﹣4,
    故答案为:﹣4;
    (2)∵b=﹣4,
    ∴抛物线解析式为y=x2﹣4x+3
    ∵抛物线y=x2﹣4x+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,
    ∴点A(0,3),3=x2﹣4x+3,
    ∴x1=0(舍去),x2=4,
    ∴点B(4,3),
    ∵y=x2﹣4x+3=(x﹣2)2﹣1,
    ∴顶点D坐标(2,﹣1),
    如图1,当点Q在点D上方时,过点C作CE⊥AB于E,设BD与x轴交于点F,
    ∵点A(0,3),点B(4,3),点C(1,0),CE⊥AB,
    ∴点E(1,3),CE=BE=3,AE=1,
    ∴∠EBC=∠ECB=45°,tan∠ACE=,
    ∴∠BCF=45°,
    ∵点B(4,3),点C(1,0),点D(2,﹣1),
    ∴BC==3,CD==,BD==2,
    ∵BC2+CD2=20=BD2,
    ∴∠BCD=90°,
    ∴tan∠DBC====tan∠ACE,
    ∴∠ACE=∠DBC,
    ∴∠ACE+∠ECB=∠DBC+∠BCF,
    ∴∠ACB=∠CFD,
    又∵∠CQD=∠ACB,
    ∴点F与点Q重合,
    ∴点P是直线CF与抛物线的交点,
    ∴0=x2﹣4x+3,
    ∴x1=1,x2=3,
    ∴点P(3,0);
    当点Q在点D下方上,过点C作CH⊥DB于H,在线段BH的延长线上截取HF=QH,连接CQ交抛物线于点P,
    ∵CH⊥DB,HF=QH,
    ∴CF=CQ,
    ∴∠CFD=∠CQD,
    ∴∠CQD=∠ACB,
    ∵CH⊥BD,
    ∵点B(4,3),点D(2,﹣1),
    ∴直线BD解析式为:y=2x﹣5,
    ∴点F(,0),
    ∴直线CH解析式为:y=﹣x+,
    ∴,
    解得,
    ∴点H坐标为(,﹣),
    ∵FH=QH,
    ∴点Q(,﹣),
    ∴直线CQ解析式为:y=﹣x+,
    联立方程组,
    解得:或,
    ∴点P(,﹣);
    综上所述:点P的坐标为(3,0)或(,﹣);
    (3)如图,设直线AC与BD的交点为N,作CH⊥BD于H,过点N作MN⊥x轴,过点E作EM⊥MN,连接CG,GF,
    ∵点A(0,3),点C(1,0),
    ∴直线AC解析式为:y=﹣3x+3,
    ∴,
    ∴,
    ∴点N坐标为(,﹣),
    ∵点H坐标为(,﹣),
    ∴CH2=(﹣1)2+()2=,HN2=(﹣)2+(﹣+)2=,
    ∴CH=HN,
    ∴∠CNH=45°,
    ∵点E关于直线BD对称的点为F,
    ∴EN=NF,∠ENB=∠FNB=45°,
    ∴∠ENF=90°,
    ∴∠ENM+∠FNM=90°,
    又∵∠ENM+∠MEN=90°,
    ∴∠MEN=∠FNM,
    ∴△EMN≌△NKF(AAS)
    ∴EM=NK=,MN=KF,
    ∴点E的横坐标为﹣,
    ∴点E(﹣,),
    ∴MN==KF,
    ∴CF=+﹣1=6,
    ∵点F关于直线BC对称的点为G,
    ∴FC=CG=6,∠BCF=∠GCB=45°,
    ∴∠GCF=90°,
    ∴点G(1,6),
    ∴AG==.
    4.(2018•常州)如图,二次函数y=﹣+bx+2的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C不重合).
    (1)b= ﹣ ,点B的坐标是 (,0) ;
    (2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在,求出点P的横坐标;若不存在,请说明理由;
    (3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.
    【解答】解:(1)∵点A(﹣4,0)在二次函数y=﹣+bx+2的图象上,
    ∴﹣﹣4b+2=0,
    ∴b=﹣.
    当y=0时,有﹣x2﹣x+2=0,
    解得:x1=﹣4,x2=,
    ∴点B的坐标为(,0).
    故答案为:﹣;(,0).
    (2)(方法一)当x=0时,y=﹣x2﹣x+2=2,
    ∴点C的坐标为(0,2).
    设直线AC的解析式为y=kx+c(k≠0),
    将A(﹣4,0)、C(0,2)代入y=kx+c中,
    得:,解得:,
    ∴直线AC的解析式为y=x+2.
    假设存在,设点M的坐标为(m,m+2).
    ①当点P、B在直线AC的异侧时,点P的坐标为(m﹣,m+3),
    ∵点P在抛物线y=﹣x2﹣x+2上,
    ∴m+3=﹣×(m﹣)2﹣×(m﹣)+2,
    整理,得:12m2+20m+9=0.
    ∵△=202﹣4×12×9=﹣32<0,
    ∴方程无解,即不存在符合题意得点P;
    ②当点P、B在直线AC的同侧时,点P的坐标为(m+,m+1),
    ∵点P在抛物线y=﹣x2﹣x+2上,
    ∴m+1=﹣×(m+)2﹣×(m+)+2,
    整理,得:4m2+44m﹣9=0,
    解得:m1=﹣,m2=,
    ∴点P的横坐标为﹣2﹣或﹣2+.
    综上所述:存在点P,使得PM:MB=1:2,点P的横坐标为﹣2﹣或﹣2+.
    (方法二)当x=0时,y=﹣x2﹣x+2=2,
    ∴点C的坐标为(0,2).
    设直线AC的解析式为y=kx+c(k≠0),
    将A(﹣4,0)、C(0,2)代入y=kx+c中,
    得:,解得:,
    ∴直线AC的解析式为y=x+2.
    过点B作BB′∥y轴交直线AC于点B′,过点P作PP′∥y轴交直线AC于点P′,如图1﹣1所示.
    ∵点B的坐标为(,0),
    ∴点B′的坐标为(,),
    ∴BB′=.
    ∵BB′∥PP′,
    ∴△PP′M∽△BB′M,
    ∴==,
    ∴PP′=.
    设点P的坐标为(x,﹣x2﹣x+2),则点P′的坐标为(x,x+2),
    ∴PP′=|﹣x2﹣x+2﹣(x+2)|=|x2+x|=,
    解得:x1=﹣2﹣,x2=﹣2+,
    ∴存在点P,使得PM:MB=1:2,点P的横坐标为﹣2﹣或﹣2+.
    (3)(解法一)∠CBA=2∠CAB,理由如下:
    作∠CBA的角平分线,交y轴于点E,过点E作EF⊥BC于点F,如图2所示.
    ∵点B(,0),点C(0,2),
    ∴OB=,OC=2,BC=.
    设OE=n,则CE=2﹣n,EF=n,
    由面积法,可知:OB•CE=BC•EF,即(2﹣n)=n,
    解得:n=.
    ∵==,∠AOC=90°=∠BOE,
    ∴△AOC∽△BOE,
    ∴∠CAO=∠EBO,
    ∴∠CBA=2∠EBO=2∠CAB.
    (解法二)∠CBA=2∠CAB,理由如下:
    将BC沿y轴对折,交x轴于点B′,如图3所示.
    ∵点B(,0),点C(0,2),点A(﹣4,0),
    ∴点B′(﹣,0),
    ∴AB′=﹣﹣(﹣4)=,B′C==,
    ∴AB′=B′C=BC,
    ∴∠CAB=∠ACB′,∠CBA=∠CB′B.
    ∵∠AB′B=∠CAB+∠ACB′,
    ∴∠CBA=2∠CAB.
    三.作图—复杂作图(共1小题)
    5.(2018•常州)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.
    (2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.
    ①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);
    ②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?
    【解答】(1)证明:如图1中,
    ∵EK垂直平分线段BC,
    ∴FC=FB,
    ∴∠CFD=∠BFD,
    ∵∠BFD=∠AFE,
    ∴∠AFE=∠CFD.
    (2)①作点P关于GN的对称点P′,连接P′M交GN于Q,连接PQ,点Q即为所求.
    理由:∵GN垂直平分PP′,
    ∴QP′=QP,∠KQP′=∠KQP,
    ∵∠GQM=∠KQP′,
    ∴∠GQM=∠PQK,
    ∴点P即为所求.
    ②结论:Q是GN的中点.
    理由:设PP′交GN于K.
    ∵∠G=60°,∠GMN=90°,
    ∴∠N=30°,
    ∵PK⊥KN,
    ∴PK=KP′=PN,
    ∴PP′=PN=PM,
    ∴∠P′=∠PMP′,
    ∵∠NPK=∠P′+∠PMP′=60°,
    ∴∠PMP′=30°,
    ∴∠N=∠QMN=30°,∠G=∠GMQ=60°,
    ∴QM=QN,QM=QG,
    ∴QG=QN,
    ∴Q是GN的中点.
    四.作图-旋转变换(共1小题)
    6.(2020•常州)如图1,点B在线段CE上,Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.
    (1)点F到直线CA的距离是 1 ;
    (2)固定△ABC,将△CEF绕点C按顺时针方向旋转30°,使得CF与CA重合,并停止旋转.
    ①请你在图1中用直尺和圆规画出线段EF经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法).该图形的面积为 ;
    ②如图2,在旋转过程中,线段CF与AB交于点O,当OE=OB时,求OF的长.
    【解答】解:(1)如图1中,作FD⊥AC于D,
    ∵Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.
    ∴∠ACB=60°,∠FCE=∠BAC=30°,AC=CF,
    ∴∠ACF=30°,
    ∴∠BAC=∠FCD,
    在△ABC和△CDF中,

    ∴△ABC≌△CDF(AAS),
    ∴FD=BC=1,
    法二:∵∠ECF=∠FCD=30°,FD⊥CD,FE⊥CE,
    ∴DF=EF,
    ∵EF=BC=1,
    ∴DF=1.
    故答案为1;
    (2)线段EF经旋转运动所形成的平面图形如图所示,此时点E落在CF上的点H处.
    S阴=S△EFC+S扇形ACF﹣S扇形CEH﹣S△AHC=S扇形ACF﹣S扇形ECH=﹣=.
    故答案为.
    (3)如图2中,过点E作EH⊥CF于H.设OB=OE=x.
    在Rt△ECF中,∵EF=1,∠ECF=30°,EH⊥CF,
    ∴EC=EF=,EH=,CH=EH=,
    在Rt△BOC中,OC==,
    ∴OH=CH﹣OC=﹣,
    在Rt△EOH中,则有x2=()2+(﹣)2,
    解得x=或﹣(不合题意舍弃),
    ∴OC==,
    ∵CF=2EF=2,
    ∴OF=CF﹣OC=2﹣=.
    解法二:作OG⊥EC于G,设OG=x,则OC=2x,CG=x,
    在Rt△OBC中,利用勾股定理,构建方程,求出x,可得结论.
    五.解直角三角形的应用(共1小题)
    7.(2018•常州)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH的长).
    【解答】解:过D作DE⊥AB,可得四边形CHED为矩形,
    ∴HE=CD=40m,
    设CH=DE=xm,
    在Rt△BDE中,∠DBA=60°,
    ∴BE=xm,
    在Rt△ACH中,∠BAC=30°,
    ∴AH=xm,
    由AH+HE+EB=AB=160m,得到x+40+x=160,
    解得:x=30,即CH=30m,
    则该段运河的河宽为30m.
    六.列表法与树状图法(共1小题)
    8.(2018•常州)将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.
    (1)搅匀后从中摸出1个盒子,求摸出的盒子中是A型矩形纸片的概率;
    (2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).
    【解答】解:(1)搅匀后从中摸出1个盒子有3种等可能结果,
    所以摸出的盒子中是A型矩形纸片的概率为;
    (2)画树状图如下:
    由树状图知共有6种等可能结果,其中2次摸出的盒子的纸片能拼成一个新矩形的有4种结果,
    所以2次摸出的盒子的纸片能拼成一个新矩形的概率为=.x

    ﹣1
    0
    1
    2
    3

    y

    4
    3
    0
    ﹣5
    ﹣12

    x

    ﹣1
    0
    1
    2
    3

    y

    4
    3
    0
    ﹣5
    ﹣12

    相关试卷

    江苏省常州市五年(2018-2022)中考数学真题题型知识点汇编:01选择题: 这是一份江苏省常州市五年(2018-2022)中考数学真题题型知识点汇编:01选择题,共26页。

    广东省省卷五年(2018-2022)中考数学真题分类汇编:06解答题提升题知识点分类: 这是一份广东省省卷五年(2018-2022)中考数学真题分类汇编:06解答题提升题知识点分类,共30页。试卷主要包含了x+2m+3,为直线l在第二象限的点等内容,欢迎下载使用。

    江苏省常州市五年(2018-2022)中考数学真题题型知识点汇编:04解答题基础题: 这是一份江苏省常州市五年(2018-2022)中考数学真题题型知识点汇编:04解答题基础题,共19页。试卷主要包含了0+2﹣1,0+4sin30°,计算,解方程和不等式组,解方程组和不等式组,,△BOC的面积是2等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        江苏省常州市五年(2018-2022)中考数学真题题型知识点汇编:06解答题提升题
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map