搜索
    上传资料 赚现金
    3.2.1 双曲线及其标准方程(学案)-2022-2023学年高二数学教材(人教A版2019选择性必修第一册)
    立即下载
    加入资料篮
    3.2.1 双曲线及其标准方程(学案)-2022-2023学年高二数学教材(人教A版2019选择性必修第一册)01
    3.2.1 双曲线及其标准方程(学案)-2022-2023学年高二数学教材(人教A版2019选择性必修第一册)02
    3.2.1 双曲线及其标准方程(学案)-2022-2023学年高二数学教材(人教A版2019选择性必修第一册)03
    还剩8页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教A版 (2019)3.2 双曲线导学案

    展开
    这是一份人教A版 (2019)3.2 双曲线导学案,共11页。学案主要包含了学习目标,自主学习,小试牛刀,经典例题,跟踪训练,当堂达标,参考答案等内容,欢迎下载使用。

    【自主学习】
    一.双曲线的定义
    思考:(1)双曲线定义中,将“小于|F1F2|”改为“等于|F1F2|”或“大于|F1F2|”的常数,其他条件不变,点的轨迹是什么?
    (2)双曲线的定义中,F1、F2分别为双曲线的左、右焦点,若|MF1|-|MF2|=2a(常数),且2a<|F1F2|,则点M的轨迹是什么?
    二.双曲线的标准方程
    思考:如何从双曲线的标准方程判断焦点的位置?
    【小试牛刀】
    思考辨析(正确的打“√”,错误的打“×”)
    (1)平面内到两定点的距离的差等于常数(小于两定点间距离)的点的轨迹是双曲线.( )
    (2)平面内到点F1(0,4),F2(0,-4)的距离之差等于6的点的轨迹是双曲线.( )
    (3)在双曲线标准方程eq \f(x2,a2)-eq \f(y2,b2)=1中,a>0,b>0且a≠b. ( )
    (4)在双曲线标准方程中,a,b,c之间的关系与椭圆中a,b,c之间的关系相同.( )
    【经典例题】
    题型一 求双曲线的标准方程
    点拨:求双曲线标准方程的步骤
    (1)定位:是指确定与坐标系的相对位置,在标准方程的前提下,确定焦点位于哪条坐标轴上,以确定方程的形式.
    (2)定量:是指确定a2,b2的数值,常由条件列方程组求解.
    提醒:若焦点的位置不明确,应注意分类讨论,也可以设双曲线方程为mx2+ny2=1的形式,注意标明条件mn<0.
    例1 根据下列条件,求双曲线的标准方程:
    (1)a=4,经过点Aeq \b\lc\(\rc\)(\a\vs4\al\c1(1,-\f(4\r(10),3)));
    (2)焦点在x轴上,经过点P(4,-2)和点Q(2eq \r(6),2eq \r(2));
    (3)过点Peq \b\lc\(\rc\)(\a\vs4\al\c1(3,\f(15,4))),Qeq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(16,3),5))且焦点在坐标轴上.
    【跟踪训练】1 根据下列条件,求双曲线的标准方程.
    (1)以椭圆eq \f(x2,8)+eq \f(y2,5)=1的焦点为顶点,顶点为焦点;
    (2)焦距为2eq \r(6),经过点(-5,2),且焦点在x轴上。
    题型二 双曲线中焦点三角形问题
    点拨:求双曲线中的焦点△PF1F2面积的方法
    (1)①根据双曲线的定义求出||PF1|-|PF2||=2a;
    ②利用余弦定理表示出|PF1|,|PF2|,|F1F2|之间满足的关系式;
    ③通过配方,利用整体的思想求出|PF1|·|PF2|的值;
    ④利用公式=eq \f(1,2)×|PF1|·|PF2|sin∠F1PF2求得面积.
    (2)利用公式=eq \f(1,2)×|F1F2|×|yP|(yP为P点的纵坐标)求得面积.
    例2 若F1,F2是双曲线eq \f(x2,9)-eq \f(y2,16)=1的两个焦点.
    (1)若双曲线上一点M到它的一个焦点的距离等于16,求点M到另一个焦点的距离;
    (2)如图,若P是双曲线左支上的点,且|PF1|·|PF2|=32,试求△F1PF2的面积.
    【跟踪训练】2 已知双曲线x2-y2=1,点F1,F2为其两个焦点,点P为双曲线上一点,若PF1⊥PF2,则|PF1|+|PF2|的值为________.
    题型三 与双曲线有关的轨迹问题
    点拨:双曲线轨迹问题的步骤
    (1)列出等量关系,化简得到方程;
    (2)寻找几何关系,结合双曲线的定义,得出对应的方程.
    求解双曲线的轨迹问题时要特别注意:(1)双曲线的焦点所在的坐标轴;(2)检验所求的轨迹对应的是双曲线的一支还是两支.
    例3 如图所示,在△ABC中,已知|AB|=4eq \r(2),且三个内角A,B,C满足2sin A+sin C=2sin B,建立适当的坐标系,求顶点C的轨迹方程.
    【跟踪训练】3 如图所示,已知定圆F1:x2+y2+10x+24=0,定圆F2:x2+y2-10x+9=0,动圆M与定圆F1,F2都外切,求动圆圆心M的轨迹方程.
    【当堂达标】
    1.(多选)双曲线=1上的点到一个焦点的距离为12,则到另一个焦点的距离为( )
    A.2B.7
    C.17D.22
    2.已知F1(-8,3),F2(2,3),动点P满足|PF1|-|PF2|=10,则P点的轨迹是( )
    A.双曲线 B.双曲线的一支 C.直线 D.一条射线
    3.已知双曲线eq \f(x2,a2)-eq \f(y2,b2)=1(a>0,b>0),F1,F2为其两个焦点,若过焦点F1的直线与双曲线的同一支相交,且所得弦长|AB|=m,则△ABF2的周长为( )
    A.4a B.4a-m C.4a+2m D.4a-2m
    4.已知方程eq \f(x2,2+m)-eq \f(y2,m+1)=1表示焦点在y轴上的双曲线,则m的取值范围是________.
    5.已知F1,F2分别为双曲线C:x2-y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|·|PF2|等于________.
    6.已知双曲线与椭圆eq \f(x2,27)+eq \f(y2,36)=1有共同的焦点,且与椭圆相交,一个交点A的纵坐标为4,求双曲线方程.
    【参考答案】
    【自主学习】
    差的绝对值 F1,F2 两焦点间
    思考:(1)当距离之差的绝对值等于|F1F2|时,动点的轨迹是两条射线,端点分别是F1,F2,当距离之差的绝对值大于|F1F2|时,动点的轨迹不存在.
    (2)点M在双曲线的右支上.
    eq \f(x2,a2)-eq \f(y2,b2)=1 eq \f(y2,a2)-eq \f(x2,b2)=1 a2+b2
    思考:焦点F1,F2的位置是双曲线定位的条件,它决定了双曲线标准方程的类型.“焦点跟着正项走”,若x2项的系数为正,则焦点在x轴上;若y2项的系数为正,则焦点在y轴上.
    【小试牛刀】
    × × × ×
    【经典例题】
    例1 解:(1)当焦点在x轴上时,设所求标准方程为eq \f(x2,16)-eq \f(y2,b2)=1(b>0),
    把点A的坐标代入,得b2=-eq \f(16,15)×eq \f(160,9)<0,不符合题意;
    当焦点在y轴上时,设所求标准方程为eq \f(y2,16)-eq \f(x2,b2)=1(b>0),
    把点A的坐标代入,得b2=9.
    故所求双曲线的标准方程为eq \f(y2,16)-eq \f(x2,9)=1.
    (2)因为焦点在x轴上,可设双曲线方程为eq \f(x2,a2)-eq \f(y2,b2)=1(a>0,b>0),
    将点(4,-2)和(2eq \r(6),2eq \r(2))代入方程得eq \b\lc\{\rc\ (\a\vs4\al\c1(\f(16,a2)-\f(4,b2)=1, ①,\f(24,a2)-\f(8,b2)=1, ②))解得a2=8,b2=4,
    所以双曲线的标准方程为eq \f(x2,8)-eq \f(y2,4)=1.
    (3)设双曲线的方程为Ax2+By2=1,AB<0.
    因为点P,Q在双曲线上,则eq \b\lc\{\rc\ (\a\vs4\al\c1(9A+\f(225,16)B=1,,\f(256,9)A+25B=1,))解得eq \b\lc\{\rc\ (\a\vs4\al\c1(A=-\f(1,16),,B=\f(1,9).))
    故双曲线的标准方程为eq \f(y2,9)-eq \f(x2,16)=1.
    【跟踪训练】1 解:(1)依题意,得双曲线的焦点在x轴上,且a=eq \r(3),c=2eq \r(2),所以b2=c2-a2=5.
    所以双曲线的标准方程为eq \f(x2,3)-eq \f(y2,5)=1.
    (2)因为焦点在x轴上,且c=eq \r(6),所以设双曲线的标准方程为eq \f(x2,a2)-eq \f(y2,6-a2)=1,0<a2<6.
    又因为过点(-5,2),所以eq \f(25,a2)-eq \f(4,6-a2)=1,解得a2=5或a2=30(舍去).
    所以双曲线的标准方程为eq \f(x2,5)-y2=1.
    例2 解:双曲线的标准方程为eq \f(x2,9)-eq \f(y2,16)=1,故a=3,b=4,c=eq \r(a2+b2)=5.
    (1)由双曲线的定义得||MF1|-|MF2||=2a=6,又双曲线上一点M到它的一个焦点的距离等于16,假设点M到另一个焦点的距离等于x,则|16-x|=6,解得x=10或x=22.
    故点M到另一个焦点的距离为10或22.
    (2)将|PF2|-|PF1|=2a=6两边平方得|PF1|2+|PF2|2-2|PF1|·|PF2|=36,
    则|PF1|2+|PF2|2=36+2|PF1|·|PF2|=36+2×32=100.
    在△F1PF2中,由余弦定理得
    cs∠F1PF2=eq \f(|PF1|2+|PF2|2-|F1F2|2,2|PF1|·|PF2|)=eq \f(100-100,2×32)=0,且∠F1PF2∈(0°,180°),
    所以∠F1PF2=90°,
    故=eq \f(1,2)|PF1|·|PF2|=eq \f(1,2)×32=16.
    【跟踪训练】2 2eq \r(3) 解析:不妨设点P在双曲线的右支上,
    因为PF1⊥PF2,所以|F1F2|2=|PF1|2+|PF2|2=(2eq \r(2))2,
    又|PF1|-|PF2|=2,所以(|PF1|-|PF2|)2=4,
    可得2|PF1|·|PF2|=4,则(|PF1|+|PF2|)2=|PF1|2+|PF2|2+2|PF1|·|PF2|=12,
    所以|PF1|+|PF2|=2eq \r(3).
    例3解:以AB边所在的直线为x轴,AB的垂直平分线为y轴,建立平面直角坐标系,如图所示,
    则A(-2eq \r(2),0),B(2eq \r(2),0).
    由正弦定理,得sin A=eq \f(|BC|,2R),sin B=eq \f(|AC|,2R),sin C=eq \f(|AB|,2R)(R为△ABC的外接圆半径).
    ∵2sin A+sin C=2sin B,∴2|BC|+|AB|=2|AC|,
    即|AC|-|BC|=eq \f(|AB|,2)=2eq \r(2)<|AB|.
    由双曲线的定义知,点C的轨迹为双曲线的右支(除去与x轴的交点).
    由题意,设所求轨迹方程为eq \f(x2,a2)-eq \f(y2,b2)=1(x>a),
    ∵a=eq \r(2),c=2eq \r(2),∴b2=c2-a2=6.
    即所求轨迹方程为eq \f(x2,2)-eq \f(y2,6)=1(x>eq \r(2)).
    【跟踪训练】3 解:圆F1:(x+5)2+y2=1,圆心F1(-5,0),半径r1=1.
    圆F2:(x-5)2+y2=42,圆心F2(5,0),半径r2=4.
    设动圆M的半径为R,则有|MF1|=R+1,|MF2|=R+4,∴|MF2|-|MF1|=3<10=|F1F2|.
    ∴点M的轨迹是以F1,F2为焦点的双曲线的左支,且a=eq \f(3,2),c=5,于是b2=c2-a2=eq \f(91,4).
    故动圆圆心M的轨迹方程为eq \f(x2,\f(9,4))-eq \f(y2,\f(91,4))=1eq \b\lc\(\rc\)(\a\vs4\al\c1(x≤-\f(3,2))).
    【当堂达标】
    1.AD 解析:因为a2=25,所以a=5.由双曲线的定义可得||PF1|-|PF2||=10.由题意知|PF1|=12,所以|PF1|-|PF2|=±10,所以|PF2|=22或2.故选:AD。
    2.D解析:F1,F2是定点,且|F1F2|=10,所以满足条件|PF1|-|PF2|=10的点P的轨迹应为一条射线.
    3.C解析:不妨设|AF2|>|AF1|,由双曲线的定义,知|AF2|-|AF1|=2a,|BF2|-|BF1|=2a,
    所以|AF2|+|BF2|=(|AF1|+|BF1|)+4a=m+4a,于是△ABF2的周长l=|AF2|+|BF2|+|AB|=4a+2m.故选C.
    4.(-∞,-2) 解析:由双曲线标准方程的特点知2+m<0且-(m+1)>0,解得m<-2.即m的取值范围为(-∞,-2).
    5. 4 解析:在△PF1F2中,|F1F2|2=|PF1|2+|PF2|2-2|PF1|·|PF2|·cs 60°=(|PF1|-|PF2|)2+|PF1|·|PF2|,即(2eq \r(2))2=22+|PF1|·|PF2|,解得|PF1|·|PF2|=4.
    6. 解:因为椭圆eq \f(x2,27)+eq \f(y2,36)=1的焦点为(0,-3),(0,3),A点的坐标为(eq \r(15),4)或(-eq \r(15),4),
    设双曲线的标准方程为eq \f(y2,a2)-eq \f(x2,b2)=1(a>0,b>0),所以eq \b\lc\{\rc\ (\a\vs4\al\c1(a2+b2=9,,\f(16,a2)-\f(15,b2)=1,))解得eq \b\lc\{\rc\ (\a\vs4\al\c1(a2=4,,b2=5,))
    所以所求的双曲线的标准方程为eq \f(y2,4)-eq \f(x2,5)=1. 课程标准
    学科素养
    1.了解双曲线的定义、几何图形和标准方程的推导过程.
    2.掌握双曲线的标准方程及其求法.
    3.会利用双曲线的定义和标准方程解决简单问题.
    1、直观想象
    2、数学运算
    3、逻辑推理
    文字语言
    平面内与两个定点F1,F2的距离的 等于非零常数(小于|F1F2|)的点的轨迹.
    符号语言
    ||PF1|-|PF2||=常数(常数<|F1F2|)
    焦点
    定点
    焦距
    的距离
    焦点在x轴上
    焦点在y轴上
    标准方程
    (a>0,b>0)
    (a>0,b>0)
    焦点
    F1(-c,0),F2(c,0)
    F1(0,-c),F2(0,c)
    a,b,c的关系
    c2=
    相关学案

    人教A版 (2019)选择性必修 第一册第三章 圆锥曲线的方程3.2 双曲线优质学案: 这是一份人教A版 (2019)选择性必修 第一册第三章 圆锥曲线的方程3.2 双曲线优质学案,共11页。学案主要包含了学习目标,自主学习,小试牛刀,经典例题,跟踪训练,当堂达标,参考答案等内容,欢迎下载使用。

    人教A版 (2019)选择性必修 第一册第二章 直线和圆的方程2.4 圆的方程学案设计: 这是一份人教A版 (2019)选择性必修 第一册第二章 直线和圆的方程2.4 圆的方程学案设计,共9页。学案主要包含了学习目标,自主学习,小试牛刀,经典例题,跟踪训练,当堂达标,参考答案等内容,欢迎下载使用。

    2020-2021学年3.2 双曲线导学案: 这是一份2020-2021学年3.2 双曲线导学案,共10页。学案主要包含了典例解析,情景导学等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        3.2.1 双曲线及其标准方程(学案)-2022-2023学年高二数学教材(人教A版2019选择性必修第一册)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map