所属成套资源:2023年高考数学(文数)一轮复习课时达标练习(答案版+教师版)
2023年高考数学(文数)一轮复习课时55《随机事件的概率》达标练习(2份,答案版+教师版)
展开
这是一份2023年高考数学(文数)一轮复习课时55《随机事件的概率》达标练习(2份,答案版+教师版),文件包含2023年高考数学文数一轮复习课时55《随机事件的概率》达标练习含详解doc、2023年高考数学文数一轮复习课时55《随机事件的概率》达标练习教师版doc等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。
一、选择题
甲、乙两人下棋,和棋的概率为eq \f(1,2),乙获胜的概率为eq \f(1,3),则下列说法正确的是( )
A.甲获胜的概率是eq \f(1,6) B.甲不输的概率是eq \f(1,2)
C.乙输了的概率是eq \f(2,3) D.乙不输的概率是eq \f(1,2)
【答案解析】答案为:A.
解析:“甲获胜”是“和棋或乙获胜”的对立事件,所以“甲获胜”的概率是P=1-eq \f(1,2)-eq \f(1,3)=eq \f(1,6),故A正确;“乙输了”等于“甲获胜”,其概率为eq \f(1,6),故C不正确;设事件A为“甲不输”,则A是“甲胜”“和棋”这两个互斥事件的并事件,所以P(A)=eq \f(1,6)+eq \f(1,2)=eq \f(2,3)(或设事件A为“甲不输”,则A是“乙获胜”的对立事件,所以P(A)=1-eq \f(1,3)=eq \f(2,3)),故B不正确;同理,“乙不输”的概率为eq \f(5,6),故D不正确.
从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )
A.eq \f(1,10) B.eq \f(1,5) C.eq \f(3,10) D.eq \f(2,5)
【答案解析】答案为:D;
解析:依题意,记两次取得卡片上的数字依次为a,b,则一共有25个不同的数组(a,b),其中满足a>b的数组共有10个,分别为(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),因此所求的概率为eq \f(10,25)=eq \f(2,5),选D.
将A,B,C,D这4名同学从左至右随机地排成一排,则“A与B相邻且A与C之间恰好有1名同学”的概率是( )
A.eq \f(1,2) B.eq \f(1,4) C.eq \f(1,6) D.eq \f(1,8)
【答案解析】答案为:B;
解析:A,B,C,D4名同学排成一排有Aeq \\al(4,4)=24种排法.当A,C之间是B时,有2×2=4种排法,当A,C之间是D时,有2种排法.所以所求概率为eq \f(4+2,24)=eq \f(1,4),故选B.
我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )
A.134石 B.169石 C.338石 D.1 365石
【答案解析】答案为:B
解析:因为样品中米内夹谷的比为eq \f(28,254),所以这批米内夹谷为1 534×eq \f(28,254)≈169(石).
如图,在A,B两点间有6条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4,现从中任取三条且使每条网线通过最大信息量,则选取的三条网线由A到B可通过的信息总量为6的概率是( )
A.eq \f(1,4) B.eq \f(1,3) C.eq \f(1,2) D.eq \f(2,3)
【答案解析】答案为:A
解析:设这6条网线从上到下分别是a,b,c,d,e,f,任取3条有:(a,b,c),(a,b,d),(a,b,e),(a,b,f),(a,c,d),(a,c,e),(a,c,f),(a,d,e),(a,d,f),(a,e,f),(b,c,d),(b,c,e),(b,c,f),(b,d,e),(b,d,f),(b,e,f),(c,d,e),(c,d,f),(c,e,f),(d,e,f),共20个不同的取法,选取的三条网线由A到B可通过的信息总量为6的取法有:(a,b,f),(a,c,e),(a,d,e),(b,c,e),(b,d,e),共5个不同的取法,所以选取的三条网线由A到B可通过的信息总量为6的概率是eq \f(1,4).
围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为eq \f(1,7),都是白子的概率是eq \f(12,35),则从中任意取出2粒恰好是同一色的概率是( )
A.eq \f(1,7) B.eq \f(12,35) C.eq \f(17,35) D.1
【答案解析】答案为:C.
解析:设“从中取出2粒都是黑子”为事件A,“从中取出2粒都是白子”为事件B,“任意取出2粒恰好是同一色”为事件C,则C=A∪B,且事件A与B互斥.所以P(C)=P(A)+P(B)=eq \f(1,7)+eq \f(12,35)=eq \f(17,35),即任意取出2粒恰好是同一色的概率为eq \f(17,35).]
从1,2,3,4,5这5个数中任取两个数,其中:
①恰有一个是偶数和恰有一个是奇数;
②至少有一个是奇数和两个都是奇数;
③至少有一个是奇数和两个都是偶数;
④至少有一个是奇数和至少有一个是偶数.
上述事件中,是对立事件的是( )
A.① B.②④ C.③ D.①③
【答案解析】答案为:C
解析:从1,2,3,4,5这5个数中任取两个数,有三种情况:一奇一偶,两个奇数,两个偶数.其中至少有一个是奇数包含一奇一偶,两个奇数这两种情况, 它与两个都是偶数是对立事件,而①中的事件可能同时发生,不是对立事件,故选C.
我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )
A.134石 B.169石 C.338石 D.1 365石
【答案解析】答案为:B;
解析:依题意,这批米内夹谷约为eq \f(28,254)×1 534≈169石.
同学聚会上,某同学从《爱你一万年》《十年》《父亲》《单身情歌》四首歌中选出两首歌进行表演,则《爱你一万年》未被选取的概率为( )
A.eq \f(1,3) B.eq \f(1,2) C.eq \f(2,3) D.eq \f(5,6)
【答案解析】答案为:B.
解析:分别记《爱你一万年》《十年》《父爱》《单身情歌》为A1,A2,A3,A4,
从这四首歌中选出两首歌进行表演的所有可能的结果为A1A2,A1A3,A1A4,A2A3,A2A4,A3A4,共6个,其中A1未被选取的结果有3个,所以所求概率P=eq \f(3,6)=eq \f(1,2).故选B.
从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是( )
A.eq \f(4,5) B.eq \f(3,5) C.eq \f(2,5) D.eq \f(1,5)
【答案解析】答案为:D;
解析:令选取的a,b组成实数对(a,b),则有(1,1),(1,2),(1,3),(2,1),(2,2),
(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3)共15种情况,
其中b>a的有(1,2),(1,3),(2,3)3种情况,所以b>a的概率为eq \f(3,15)=eq \f(1,5).故选D.
在2,0,1,5这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为( )
A.eq \f(3,4) B.eq \f(5,8) C.eq \f(1,2) D.eq \f(1,4)
【答案解析】答案为:C
解析:由题意可知,共有(0,1,2),(0,2,5),(1,2,5),(0,1,5)4种取法,
符合题意的取法有2种,故所求概率P=eq \f(1,2).
从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的产品不是一等品”的概率为( )
A.0.7 D.0.3
【答案解析】答案为:C;
解析:∵事件A={抽到一等品},且P(A)=0.65,
∴事件“抽到的产品不是一等品”的概率P=1-P(A)=1-0.65=0.35.故选C.
二、填空题
某产品分甲、乙、丙三级,其中乙、丙两级均属次品.若生产中出现乙级品的概率为0.03,丙级品的概率为0.01,则对成品抽查一件抽得正品的概率为________.
【答案解析】答案为:0.96
解析:记“生产中出现甲级品、乙级品、丙级品”分别为事件A,B,C.则A,B,C彼此互斥,由题意可得P(B)=0.03,P(C)=0.01,所以P(A)=1-P(B+C)=1-P(B)-P(C)=1-0.03-0.01=0.96.
甲、乙两人下棋,两人下成和棋的概率是eq \f(1,2),乙获胜的概率是eq \f(1,3),则乙不输的概率是____.
【答案解析】答案为:eq \f(5,6).
解析:因为乙不输包含两人下成和棋或乙获胜,所以乙不输的概率为eq \f(1,2)+eq \f(1,3)=eq \f(5,6).
已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为________.
【答案解析】答案为:0.25
解析:20组随机数中表示三次投篮恰好有两次命中的是191,271,932,812,393,
其频率为eq \f(5,20)=0.25,以此估计该运动员三次投篮恰有两次命中的概率为0.25.
盒中有三张分别标有号码3,4,5的卡片,从盒中随机抽取一张记下号码后放回,再随机抽取一张记下号码,则两次抽取的卡片号码中至少有一个为奇数的概率为________.
【答案解析】答案为:eq \f(8,9)
解析:解法一:两次抽取的卡片号码有(3,3),(3,4),(3,5),(4,3),(4,4),(4,5),(5,3),(5,4),(5,5),共9种,其中至少有一个是奇数为(3,3),(3,4),(3,5),(4,3),(4,5),(5,3),(5,4),(5,5),共8种,因此所求概率为eq \f(8,9).
解法二:所求事件的对立事件为:两次抽取的卡片号码都为偶数,只有(4,4)这1种取法,而两次抽取的卡片号码有(3,3),(3,4),(3,5),(4,3),(4,4),(4,5),(5,3),(5,4),(5,5),共9种,因此所求事件的概率为1-eq \f(1,9)=eq \f(8,9).
相关试卷
这是一份2023年高考数学(理数)一轮复习课时55《随机事件的概率》达标练习(含详解),文件包含2023年高考数学理数一轮复习课时55《随机事件的概率》达标练习含详解doc、2023年高考数学理数一轮复习课时55《随机事件的概率》达标练习教师版doc等2份试卷配套教学资源,其中试卷共7页, 欢迎下载使用。
这是一份2023年高考数学(文数)一轮复习课时01《集合》达标练习(2份,答案版+教师版),文件包含2023年高考数学文数一轮复习课时01《集合》达标练习含详解doc、2023年高考数学文数一轮复习课时01《集合》达标练习教师版doc等2份试卷配套教学资源,其中试卷共4页, 欢迎下载使用。
这是一份2023年高考数学(文数)一轮复习课时45《椭圆》达标练习(2份,答案版+教师版),文件包含2023年高考数学文数一轮复习课时45《椭圆》达标练习含详解doc、2023年高考数学文数一轮复习课时45《椭圆》达标练习教师版doc等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。