02选择题(中档题)-山东省滨州市五年(2018-2022)中考数学真题分类汇编(共28题)
展开02选择题(中档题)-山东省滨州市五年(2018-2022)中考数学真题分类汇编
一、 全等三角形的判定与性质(共2小题)
1. (2021•滨州)在锐角△ABC中,分别以AB和AC为斜边向△ABC的外侧作等腰Rt△ABM和等腰Rt△ACN,点D、E、F分别为边AB、AC、BC的中点,连接MD、MF、FE、FN.根据题意小明同学画出草图(如图所示),并得出下列结论:①MD=FE,②∠DMF=∠EFN,③FM⊥FN,④S△CEF=S四边形ABFE,其中结论正确的个数为( )
A.4 B.3 C.2 D.1
2. (2019•滨州)如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO平分∠BMC.其中正确的个数为( )
A.4 B.3 C.2 D.1
二、 勾股定理(共2小题)
3. (2021•滨州)在Rt△ABC中,若∠C=90°,AC=3,BC=4,则点C到直线AB的距离为( )
A.3 B.4 C.5 D.2.4
4. (2018•滨州)在直角三角形中,若勾为3,股为4,则弦为( )
A.5 B.6 C.7 D.8
三、 勾股定理的逆定理(共1小题)
5. (2019•滨州)满足下列条件时,△ABC不是直角三角形的为( )
A.AB=,BC=4,AC=5 B.AB:BC:AC=3:4:5
C.∠A:∠B:∠C=3:4:5 D.|cosA﹣|+(tanB﹣)2=0
四、 平行四边形的性质(共1小题)
6. (2021•滨州)如图,在▱ABCD中,BE平分∠ABC交DC于点E.若∠A=60°,则∠DEB的大小为( )
A.130° B.125° C.120° D.115°
五、 正方形的判定(共1小题)
7. (2022•滨州)下列命题,其中是真命题的是( )
A.对角线互相垂直的四边形是平行四边形
B.有一个角是直角的四边形是矩形
C.对角线互相平分的四边形是菱形
D.对角线互相垂直的矩形是正方形
六、 垂径定理(共1小题)
8. (2020•滨州)在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE的长为( )
A.6 B.9 C.12 D.15
七、 圆周角定理(共2小题)
9. (2022•滨州)如图,在⊙O中,弦AB、CD相交于点P.若∠A=48°,∠APD=80°,则∠B的大小为( )
A.32° B.42° C.52° D.62°
10. (2019•滨州)如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为( )
A.60° B.50° C.40° D.20°
八、 三角形的外接圆与外心(共2小题)
11. (2021•滨州)如图,⊙O是△ABC的外接圆,CD是⊙O的直径.若CD=10,弦AC=6,则cos∠ABC的值为( )
A. B. C. D.
12. (2018•滨州)已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧的长为( )
A. B. C. D.
九、 命题与定理(共2小题)
13. (2020•滨州)下列命题是假命题的是( )
A.对角线互相垂直且相等的平行四边形是正方形
B.对角线互相垂直的矩形是正方形
C.对角线相等的菱形是正方形
D.对角线互相垂直且平分的四边形是正方形
14. (2018•滨州)下列命题,其中是真命题的为( )
A.一组对边平行,另一组对边相等的四边形是平行四边形
B.对角线互相垂直的四边形是菱形
C.对角线相等的四边形是矩形
D.一组邻边相等的矩形是正方形
十、 轨迹(共1小题)
15. (2022•滨州)正方形ABCD的对角线相交于点O(如图1),如果∠BOC绕点O按顺时针方向旋转,其两边分别与边AB、BC相交于点E、F(如图2),连接EF,那么在点E由B到A的过程中,线段EF的中点G经过的路线是( )
A.线段 B.圆弧 C.折线 D.波浪线
十一、 轴对称-最短路线问题(共1小题)
16. (2018•滨州)如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是( )
A. B. C.6 D.3
十二、 翻折变换(折叠问题)(共1小题)
17. (2020•滨州)如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,BM与EF相交于点N.若直线BA′交直线CD于点O,BC=5,EN=1,则OD的长为( )
A. B. C. D.
十三、 坐标与图形变化-平移(共1小题)
18. (2019•滨州)在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,则点B的坐标是( )
A.(﹣1,1) B.(3,1) C.(4,﹣4) D.(4,0)
十四、 .中心对称图形(共1小题)
19. (2020•滨州)下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为( )
A.1 B.2 C.3 D.4
十五、 关于原点对称的点的坐标(共1小题)
20. (2019•滨州)已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是( )
A. B.
C. D.
十六、 位似变换(共1小题)
21. (2018•滨州)在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,则点A的对应点C的坐标为( )
A.(5,1) B.(4,3) C.(3,4) D.(1,5)
十七、 特殊角的三角函数值(共1小题)
22. (2022•滨州)下列计算结果,正确的是( )
A.(a2)3=a5 B.=3 C.=2 D.cos30°=
十八、 简单组合体的三视图(共2小题)
23. (2021•滨州)如图所示的几何体是由几个相同的小正方体组合而成的,其俯视图为( )
A. B. C. D.
24. (2019•滨州)如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是( )
A.主视图的面积为4 B.左视图的面积为4
C.俯视图的面积为3 D.三种视图的面积都是4
十九、 方差(共3小题)
25. (2022•滨州)今年我国小麦大丰收,农业专家在某种植片区随机抽取了10株小麦,测得其麦穗长(单位:cm)分别为8,8,6,7,9,9,7,8,10,8,那么这一组数据的方差为( )
A.1.5 B.1.4 C.1.3 D.1.2
26. (2020•滨州)已知一组数据:5,4,3,4,9,关于这组数据的下列描述:
①平均数是5,②中位数是4,③众数是4,④方差是4.4,
其中正确的个数为( )
A.1 B.2 C.3 D.4
27. (2018•滨州)如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为( )
A.4 B.3 C.2 D.1
二十、 列表法与树状图法(共1小题)
28. (2021•滨州)在四张反面无差别的卡片上,其正面分别印有线段、等边三角形、平行四边形和正六边形.现将四张卡片的正面朝下放置,混合均匀后从中随机抽取两张,则抽到的卡片正面图形都是轴对称图形的概率为( )
A. B. C. D.
参考答案与试题解析
一、 全等三角形的判定与性质(共2小题)
1. (2021•滨州)在锐角△ABC中,分别以AB和AC为斜边向△ABC的外侧作等腰Rt△ABM和等腰Rt△ACN,点D、E、F分别为边AB、AC、BC的中点,连接MD、MF、FE、FN.根据题意小明同学画出草图(如图所示),并得出下列结论:①MD=FE,②∠DMF=∠EFN,③FM⊥FN,④S△CEF=S四边形ABFE,其中结论正确的个数为( )
A.4 B.3 C.2 D.1
【解答】解:∵D、E、F分别为边AB、AC、BC的中点,且△ABM是等腰直角三角形,
∴DM=,EF=,EF∥AB,∠MDB=90°,
∴DM=EF,∠FEC=∠BAC,故结论①正确;
连接DF,EN,
∵D、E、F分别为边AB、AC、BC的中点,且△ACN是等腰直角三角形,
∴EN=,DF=,DF∥AC,∠NEC=90°,
∴EN=DF,∠BDF=∠BAC,∠BDF=∠FEC,
∴∠BDF+∠MDB=∠FEC+∠NEC,
∴∠MDF=∠FEN,
在△MDF和△FEN中,
∴△MDF≌△FEN(SAS),
∴∠DMF=∠EFN,故结论②正确;
∵EF∥AB,DF∥AC,
∴四边形ADFE是平行四边形,
∴∠DFE=∠BAC,
又∵△MDF≌△FEN,
∴∠DFM=∠ENF,
∴∠EFN+∠DFM=∠EFN+∠ENF=180°﹣∠FEN=180°﹣(∠FEC+∠NEC)=180°﹣(∠BAC+90°)=90°﹣∠BAC,
∴∠MFN=∠DFE+∠EFN+∠DFM=∠BAC+90°﹣∠BAC=90°,
∴MF⊥FN,故结论③正确;
∵EF∥AB,
∴△CEF∽△CAB,
∴,
∴,
∴S△CEF=S四边形ABFE,故结论④错误,
∴正确的结论为①②③,共3个,
故选:B.
2. (2019•滨州)如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO平分∠BMC.其中正确的个数为( )
A.4 B.3 C.2 D.1
【解答】解:∵∠AOB=∠COD=40°,
∴∠AOB+∠AOD=∠COD+∠AOD,
即∠AOC=∠BOD,
在△AOC和△BOD中,,
∴△AOC≌△BOD(SAS),
∴∠OCA=∠ODB,AC=BD,①正确;
∴∠OAC=∠OBD,
由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,
∴∠AMB=∠AOB=40°,②正确;
作OG⊥MC于G,OH⊥MB于H,如图2所示:
则∠OGC=∠OHD=90°,
在△OCG和△ODH中,,
∴△OCG≌△ODH(AAS),
∴OG=OH,
∴MO平分∠BMC,④正确;
∵∠AOB=∠COD,
∴当∠DOM=∠AOM时,OM才平分∠BOC,
假设∠DOM=∠AOM
∵∠AOB=∠COD,
∴∠COM=∠BOM,
∵MO平分∠BMC,
∴∠CMO=∠BMO,
在△COM和△BOM中,,
∴△COM≌△BOM(ASA),
∴OB=OC,
∵OA=OB
∴OA=OC
与OA>OC矛盾,
∴③错误;
正确的个数有3个;
故选:B.
二、 勾股定理(共2小题)
3. (2021•滨州)在Rt△ABC中,若∠C=90°,AC=3,BC=4,则点C到直线AB的距离为( )
A.3 B.4 C.5 D.2.4
【解答】解:作CD⊥AB于点D,如右图所示,
∵∠C=90°,AC=3,BC=4,
∴AB===5,
∵,
∴,
解得CD=2.4,
故选:D.
4. (2018•滨州)在直角三角形中,若勾为3,股为4,则弦为( )
A.5 B.6 C.7 D.8
【解答】解:∵在直角三角形中,勾为3,股为4,
∴弦为=5.
故选:A.
三、 勾股定理的逆定理(共1小题)
5. (2019•滨州)满足下列条件时,△ABC不是直角三角形的为( )
A.AB=,BC=4,AC=5 B.AB:BC:AC=3:4:5
C.∠A:∠B:∠C=3:4:5 D.|cosA﹣|+(tanB﹣)2=0
【解答】解:A、∵,∴△ABC是直角三角形,错误;
B、∵(3x)2+(4x)2=9x2+16x2=25x2=(5x)2,∴△ABC是直角三角形,错误;
C、∵∠A:∠B:∠C=3:4:5,∴∠C=,∴△ABC不是直角三角形,正确;
D、∵|cosA﹣|+(tanB﹣)2=0,∴,∴∠A=60°,∠B=30°,∴∠C=90°,∴△ABC是直角三角形,错误;
故选:C.
四、 平行四边形的性质(共1小题)
6. (2021•滨州)如图,在▱ABCD中,BE平分∠ABC交DC于点E.若∠A=60°,则∠DEB的大小为( )
A.130° B.125° C.120° D.115°
【解答】解:∵四边形ABCD是平行四边形,
∴AD∥BC,DC∥AB,
∴∠A+∠ABC=180°,∠ABE+∠DEB=180°,
∵∠A=60°,
∴∠ABC=120°,
∵BE平分∠ABC,
∴∠ABE=60°,
∴∠DEB=120°,
故选:C.
五、 正方形的判定(共1小题)
7. (2022•滨州)下列命题,其中是真命题的是( )
A.对角线互相垂直的四边形是平行四边形
B.有一个角是直角的四边形是矩形
C.对角线互相平分的四边形是菱形
D.对角线互相垂直的矩形是正方形
【解答】解:A、对角线互相垂直的四边形是平行四边形,是假命题,本选项不符合题意;
B、有一个角是直角的四边形是矩形,是假命题,本选项不符合题意;
C、对角线互相平分的四边形是菱形,是假命题,本选项不符合题意;
D、对角线互相垂直的矩形是正方形,是真命题,本选项符合题意.
故选:D.
六、 垂径定理(共1小题)
8. (2020•滨州)在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE的长为( )
A.6 B.9 C.12 D.15
【解答】解:如图所示:连接OD,
∵直径AB=15,
∴BO=7.5,
∵OC:OB=3:5,
∴CO=4.5,
∴DC==6,
∴DE=2DC=12.
故选:C.
七、 圆周角定理(共2小题)
9. (2022•滨州)如图,在⊙O中,弦AB、CD相交于点P.若∠A=48°,∠APD=80°,则∠B的大小为( )
A.32° B.42° C.52° D.62°
【解答】解:∵∠A=∠D,∠A=48°,
∴∠D=48°,
∵∠APD=80°,∠APD=∠B+∠D,
∴∠B=∠APD﹣∠D=80°﹣48°=32°,
故选:A.
10. (2019•滨州)如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为( )
A.60° B.50° C.40° D.20°
【解答】解:连接AD,
∵AB为⊙O的直径,
∴∠ADB=90°.
∵∠BCD=40°,
∴∠A=∠BCD=40°,
∴∠ABD=90°﹣40°=50°.
故选:B.
八、 三角形的外接圆与外心(共2小题)
11. (2021•滨州)如图,⊙O是△ABC的外接圆,CD是⊙O的直径.若CD=10,弦AC=6,则cos∠ABC的值为( )
A. B. C. D.
【解答】解:连接AD,如右图所示,
∵CD是⊙O的直径,CD=10,弦AC=6,
∴∠DAC=90°,
∴AD=====8,
∴cos∠ADC===,
∵∠ABC=∠ADC,
∴cos∠ABC的值为,
故选:A.
12. (2018•滨州)已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧的长为( )
A. B. C. D.
【解答】解:如图:连接AO,CO,
∵∠ABC=25°,
∴∠AOC=50°,
∴劣弧的长=,
故选:C.
九、 命题与定理(共2小题)
13. (2020•滨州)下列命题是假命题的是( )
A.对角线互相垂直且相等的平行四边形是正方形
B.对角线互相垂直的矩形是正方形
C.对角线相等的菱形是正方形
D.对角线互相垂直且平分的四边形是正方形
【解答】解:A、对角线互相垂直且相等的平行四边形是正方形是真命题,故选项A不合题意;
B、对角线互相垂直的矩形是正方形是真命题,故选项B不合题意;
C、对角线相等的菱形是正方形是真命题,故选项C不合题意;
D、对角线互相垂直且平分的四边形是菱形,即对角线互相垂直且平分的四边形是正方形是假命题,故选项D符合题意;
故选:D.
14. (2018•滨州)下列命题,其中是真命题的为( )
A.一组对边平行,另一组对边相等的四边形是平行四边形
B.对角线互相垂直的四边形是菱形
C.对角线相等的四边形是矩形
D.一组邻边相等的矩形是正方形
【解答】解:A、例如等腰梯形,故本选项错误;
B、根据菱形的判定,应是对角线互相垂直的平行四边形,故本选项错误;
C、对角线相等且互相平分的平行四边形是矩形,故本选项错误;
D、一组邻边相等的矩形是正方形,故本选项正确.
故选:D.
十、 轨迹(共1小题)
15. (2022•滨州)正方形ABCD的对角线相交于点O(如图1),如果∠BOC绕点O按顺时针方向旋转,其两边分别与边AB、BC相交于点E、F(如图2),连接EF,那么在点E由B到A的过程中,线段EF的中点G经过的路线是( )
A.线段 B.圆弧 C.折线 D.波浪线
【解答】解:建立如图平面直角坐标系,设正方形ABCD的边长为1,
∵四边形ABCD是正方形,
∴OAE=∠OBF=45°,OA=OB,
∵∠AOB=∠EOF=90°,
∴∠AOE=∠BOF,
∴△AOE≌△BOF(ASA),
∴AE=BF,
设AE=BF=a,则F(a,0),E(0,1﹣a),
∵EG=FG,
∴G(a,﹣a),
∴点G在直线y=﹣x+上运动,
∴点G的运动轨迹是线段,
故选:A.
十一、 轴对称-最短路线问题(共1小题)
16. (2018•滨州)如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是( )
A. B. C.6 D.3
【解答】解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,
则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,
∴PN+PM+MN=ND+MN+MC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,
∴此时△PMN周长最小,
作OH⊥CD于H,则CH=DH,
∵∠OCH=30°,
∴OH=OC=,
CH=OH=,
∴CD=2CH=3.
故选:D.
十二、 翻折变换(折叠问题)(共1小题)
17. (2020•滨州)如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,BM与EF相交于点N.若直线BA′交直线CD于点O,BC=5,EN=1,则OD的长为( )
A. B. C. D.
【解答】解一:∵EN=1,
∴由中位线定理得AM=2,
由折叠的性质可得A′M=2,
∵AD∥EF,
∴∠AMB=∠A′NM,
∵∠AMB=∠A′MB,
∴∠A′NM=∠A′MB,
∴A′N=2,
∴A′E=3,A′F=2
过M点作MG⊥EF于G,
∴NG=EN=1,
∴A′G=1,
由勾股定理得MG==,
∴BE=DF=MG=,
∴OF:BE=2:3,
解得OF=,
∴OD=﹣=.
故选:B.
解二:连接AA'.
∵EN=1,
∴由中位线定理得AM=2,
∵对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,
∴A'A=A'B,
∵把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,
∴A'B=AB,∠ABM=∠A'BM,
∴△ABA'为等边三角形,
∴∠ABA′=∠BA′A=∠A′AB=60°,
又∵∠ABC=∠BAM=90°,
∴∠ABM=∠A'BM=∠A'BC=30°,
∴BM=2AM=4,AB=AM=2=CD.
在直角△OBC中,∵∠C=90°,∠OBC=30°,
∴OC=BC•tan∠OBC=5×=,
∴OD=CD﹣OC=2﹣=.
故选:B.
方法3:∵N是BM中点,
∴BN=NA′,
∴∠NBA′=∠NA′B,
又∵∠ABN=∠A′BN,
又∵∠BEN=90°,
∴∠ABN=∠NBA′=∠A′BN=30°,
又∵EN=1,
∴AM=A′M=2=A′N,
∴BE=,AB=DC=2,∠OBC=30°,BC=5,
∴OC=,
∴DO=2﹣=.
故选:B.
十三、 坐标与图形变化-平移(共1小题)
18. (2019•滨州)在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,则点B的坐标是( )
A.(﹣1,1) B.(3,1) C.(4,﹣4) D.(4,0)
【解答】解:∵将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,
∴点B的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,
∴B的坐标为(﹣1,1).
故选:A.
十四、 中心对称图形(共1小题)
19. (2020•滨州)下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为( )
A.1 B.2 C.3 D.4
【解答】解:线段是轴对称图形,也是中心对称图形;
等边三角形是轴对称图形,不是中心对称图形;
平行四边形不是轴对称图形,是中心对称图形;
圆是轴对称图形,也是中心对称图形;
则既是轴对称图形又是中心对称图形的有2个.
故选:B.
十五、 关于原点对称的点的坐标(共1小题)
20. (2019•滨州)已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是( )
A. B.
C. D.
【解答】解:∵点P(a﹣3,2﹣a)关于原点对称的点在第四象限,
∴点P(a﹣3,2﹣a)在第二象限,
∴,
解得:a<2.
则a的取值范围在数轴上表示正确的是:.
故选:C.
十六、 位似变换(共1小题)
21. (2018•滨州)在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,则点A的对应点C的坐标为( )
A.(5,1) B.(4,3) C.(3,4) D.(1,5)
【解答】解:∵以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,
∴端点C的横坐标和纵坐标都变为A点的横坐标和纵坐标的一半,
又∵A(6,8),
∴端点C的坐标为(3,4).
故选:C.
十七、 特殊角的三角函数值(共1小题)
22. (2022•滨州)下列计算结果,正确的是( )
A.(a2)3=a5 B.=3 C.=2 D.cos30°=
【解答】解:A. (a2)=a6,所以A选项不符合题意;
B. ==2,所以B选项不符合题意;
C. =2,所以C选项符合题意;
D.cos30°=,所以D选项不符合题意;
故选:C.
十八、 简单组合体的三视图(共2小题)
23. (2021•滨州)如图所示的几何体是由几个相同的小正方体组合而成的,其俯视图为( )
A. B. C. D.
【解答】解:由图可得,
俯视图为:,
故选:B.
24. (2019•滨州)如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是( )
A.主视图的面积为4 B.左视图的面积为4
C.俯视图的面积为3 D.三种视图的面积都是4
【解答】解:A.主视图的面积为4,此选项正确;
B.左视图的面积为3,此选项错误;
C.俯视图的面积为4,此选项错误;
D.由以上选项知此选项错误;
故选:A.
十九、 方差(共3小题)
25. (2022•滨州)今年我国小麦大丰收,农业专家在某种植片区随机抽取了10株小麦,测得其麦穗长(单位:cm)分别为8,8,6,7,9,9,7,8,10,8,那么这一组数据的方差为( )
A.1.5 B.1.4 C.1.3 D.1.2
【解答】解:这一组数据的平均数为×(8+8+6+7+9+9+7+8+10+8)=8,
故这一组数据的方差为×[4×(8﹣8)2+(6﹣8)2+2×(7﹣8)2+2×(9﹣8)2+(10﹣8)2]=1.2,
故选:D.
26. (2020•滨州)已知一组数据:5,4,3,4,9,关于这组数据的下列描述:
①平均数是5,②中位数是4,③众数是4,④方差是4.4,
其中正确的个数为( )
A.1 B.2 C.3 D.4
【解答】解:数据由小到大排列为3,4,4,5,9,
它的平均数为=5,
数据的中位数为4,众数为4,
数据的方差=[(3﹣5)2+(4﹣5)2+(4﹣5)2+(5﹣5)2+(9﹣5)2]=4.4.
所以①②③④都正确.
故选:D.
27. (2018•滨州)如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为( )
A.4 B.3 C.2 D.1
【解答】解:根据题意,得:=2x,
解得:x=3,
则这组数据为6、7、3、9、5,其平均数是6,
所以这组数据的方差为×[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,
故选:A.
二十、 列表法与树状图法(共1小题)
28. (2021•滨州)在四张反面无差别的卡片上,其正面分别印有线段、等边三角形、平行四边形和正六边形.现将四张卡片的正面朝下放置,混合均匀后从中随机抽取两张,则抽到的卡片正面图形都是轴对称图形的概率为( )
A. B. C. D.
【解答】解:由题意可得,
线段是轴对称图形,等边三角形是轴对称图形,平行四边形不是轴对称图形,正六边形是轴对称图形,
设线段、等边三角形、平行四边形和正六边形分别用字母A、B、C、D表示,
树状图如下图所示:
由上可得,一共有12种可能性,其中抽到的卡片正面图形都是轴对称图形的有6种,
∴抽到的卡片正面图形都是轴对称图形的概率是=,
故选:A.
02选择题基础题&中档题知识点分类-天津市五年(2018-2022)中考数学真题分类汇编: 这是一份02选择题基础题&中档题知识点分类-天津市五年(2018-2022)中考数学真题分类汇编,共20页。试卷主要包含了,有下列结论等内容,欢迎下载使用。
浙江省宁波市五年(2018-2022)中考数学真题分层分类汇编-02选择题(基础题&中档题)知识点分类: 这是一份浙江省宁波市五年(2018-2022)中考数学真题分层分类汇编-02选择题(基础题&中档题)知识点分类,共20页。
02选择题(基础题&中档题)知识点分类-浙江省绍兴市五年(2018-2022)中考数学真题分层分类汇编: 这是一份02选择题(基础题&中档题)知识点分类-浙江省绍兴市五年(2018-2022)中考数学真题分层分类汇编,共29页。