山东省2022年各地区中考数学真题按题型分层分类汇编-02选择题基础题
展开山东省2022年各地区中考数学真题按题型分层分类汇编-02选择题基础题
一.科学记数法—表示较大的数(共1小题)
1.(2022•济南)神舟十三号飞船在近地点高度200000m,远地点高度356000m的轨道上驻留了6个月后,于2022年4月16日顺利返回.将数字356000用科学记数法表示为( )
A.3.56×105 B.0.356×106 C.3.56×106 D.35.6×104
二.科学记数法—表示较小的数(共1小题)
2.(2022•青岛)我国古代数学家祖冲之推算出π的近似值为,它与π的误差小于0.0000003.将0.0000003用科学记数法可以表示为( )
A.3×10﹣7 B.0.3×10﹣6 C.3×10﹣6 D.3×107
三.算术平方根(共1小题)
3.(2022•烟台)如图,正方形ABCD边长为1,以AC为边作第2个正方形ACEF,再以CF为边作第3个正方形FCGH,…,按照这样的规律作下去,第6个正方形的边长为( )
A.(2)5 B.(2)6 C.()5 D.()6
四.实数(共1小题)
4.(2022•日照)在实数,x0(x≠0),cos30°,中,有理数的个数是( )
A.1个 B.2个 C.3个 D.4个
五.实数与数轴(共1小题)
5.(2022•济南)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是( )
A.ab>0 B.a+b>0 C.|a|<|b| D.a+1<b+1
六.规律型:图形的变化类(共1小题)
6.(2022•济宁)如图,用相同的圆点按照一定的规律拼出图形.第一幅图4个圆点,第二幅图7个圆点,第三幅图10个圆点,第四幅图13个圆点……按照此规律,第一百幅图中圆点的个数是( )
A.297 B.301 C.303 D.400
七.同底数幂的除法(共2小题)
7.(2022•日照)下列运算正确的是( )
A.a6÷a2=a3 B.a4•a2=a6 C.(a2)3=a5 D.a3+a3=a6
8.(2022•烟台)下列计算正确的是( )
A.2a+a=3a2 B.a3•a2=a6 C.a5﹣a3=a2 D.a3÷a2=a
八.分式的化简求值(共1小题)
9.(2022•济南)若m﹣n=2,则代数式•的值是( )
A.﹣2 B.2 C.﹣4 D.4
九.零指数幂(共1小题)
10.(2022•济宁)下列各式运算正确的是( )
A.﹣3(x﹣y)=﹣3x+y B.x3•x2=x6
C.(π﹣3.14)0=1 D.(x3)2=x5
一十.二次根式的性质与化简(共1小题)
11.(2022•聊城)射击时,子弹射出枪口时的速度可用公式v=进行计算,其中a为子弹的加速度,s为枪筒的长.如果a=5×105m/s2,s=0.64m,那么子弹射出枪口时的速度(用科学记数法表示)为( )
A.0.4×103m/s B.0.8×103m/s C.4×102m/s D.8×102m/s
一十一.二次根式的混合运算(共1小题)
12.(2022•青岛)计算(﹣)×的结果是( )
A. B.1 C. D.3
一十二.由实际问题抽象出二元一次方程组(共1小题)
13.(2022•日照)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是( )
A. B.
C. D.
一十三.解一元二次方程-配方法(共1小题)
14.(2022•聊城)用配方法解一元二次方程3x2+6x﹣1=0时,将它化为(x+a)2=b的形式,则a+b的值为( )
A. B. C.2 D.
一十四.由实际问题抽象出分式方程(共1小题)
15.(2022•潍坊)观察我国原油进口月度走势图,2022年4月原油进口量比2021年4月增加267万吨,当月增速为6.6%(计算方法:×100%≈6.6%).2022年3月当月增速为﹣14.0%,设2021年3月原油进口量为x万吨,下列算法正确的是( )
A.×100%=﹣14.0%
B.×100%=﹣14.0%
C.×100%=﹣14.0%
D.×100%=﹣14.0%
一十五.解一元一次不等式(共1小题)
16.(2022•聊城)关于x,y的方程组的解中x与y的和不小于5,则k的取值范围为( )
A.k≥8 B.k>8 C.k≤8 D.k<8
一十六.解一元一次不等式组(共1小题)
17.(2022•潍坊)不等式组的解集在数轴上表示正确的是( )
A.
B.
C.
D.
一十七.一元一次不等式组的整数解(共1小题)
18.(2022•济宁)若关于x的不等式组仅有3个整数解,则a的取值范围是( )
A.﹣4≤a<﹣2 B.﹣3<a≤﹣2 C.﹣3≤a≤﹣2 D.﹣3≤a<﹣2
一十八.函数值(共1小题)
19.(2022•枣庄)已知y1和y2均是以x为自变量的函数,当x=n时,函数值分别是N1和N2,若存在实数n,使得N1+N2=1,则称函数y1和y2是“和谐函数”.则下列函数y1和y2不是“和谐函数”的是( )
A.y1=x2+2x和y2=﹣x+1 B.y1=和y2=x+1
C.y1=﹣和y2=﹣x﹣1 D.y1=x2+2x和y2=﹣x﹣1
一十九.函数的图象(共3小题)
20.(2022•烟台)周末,父子二人在一段笔直的跑道上练习竞走,两人分别从跑道两端开始往返练习.在同一直角坐标系中,父子二人离同一端的距离s(米)与时间t(秒)的关系图象如图所示.若不计转向时间,按照这一速度练习20分钟,迎面相遇的次数为( )
A.12 B.16 C.20 D.24
21.(2022•潍坊)地球周围的大气层阻挡了紫外线和宇宙射线对地球生命的伤害,同时产生一定的大气压,海拔不同,大气压不同.观察图中数据,你发现( )
A.海拔越高,大气压越大
B.图中曲线是反比例函数的图象
C.海拔为4千米时,大气压约为70千帕
D.图中曲线表达了大气压和海拔两个量之间的变化关系
22.(2022•临沂)甲、乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y(单位:km)与时间x(单位:h)的对应关系如图所示,下列说法中不正确的是( )
A.甲车行驶到距A城240km处,被乙车追上
B.A城与B城的距离是300km
C.乙车的平均速度是80km/h
D.甲车比乙车早到B城
二十.动点问题的函数图象(共1小题)
23.(2022•潍坊)如图,在▱ABCD中,∠A=60°,AB=2,AD=1,点E,F在▱ABCD的边上,从点A同时出发,分别沿A→B→C和A→D→C的方向以每秒1个单位长度的速度运动,到达点C时停止,线段EF扫过区域的面积记为y,运动时间记为x,能大致反映y与x之间函数关系的图象是( )
A. B.
C. D.
二十一.一次函数的应用(共1小题)
24.(2022•日照)下列说法正确的是( )
A.一元一次方程﹣1=x的解是x=2
B.在连续5次数学测试中,两名同学的平均成绩相同,则方差较大的同学的成绩更稳定
C.从5名男生,2名女生中抽取3人参加活动,至少会有1名男生被抽中
D.将一次函数y=﹣2x+5的图象向上平移两个单位,则平移后的函数解析式为y=﹣2x+1
二十二.反比例函数的图象(共1小题)
25.(2022•菏泽)根据如图所示的二次函数y=ax2+bx+c的图象,判断反比例函数y=与一次函数y=bx+c的图象大致是( )
A. B. C. D.
二十三.反比例函数系数k的几何意义(共1小题)
26.(2022•日照)如图,矩形OABC与反比例函数y1=(k1是非零常数,x>0)的图象交于点M,N,与反比例函数y2=(k2是非零常数,x>0)的图象交于点B,连接OM,ON.若四边形OMBN的面积为3,则k1﹣k2=( )
A.3 B.﹣3 C. D.
二十四.反比例函数图象上点的坐标特征(共1小题)
27.(2022•枣庄)如图,正方形ABCD的边长为5,点A的坐标为(4,0),点B在y轴上,若反比例函数y=(k≠0)的图象过点C,则k的值为( )
A.4 B.﹣4 C.﹣3 D.3
二十五.二次函数的定义(共1小题)
28.(2022•济南)某学校要建一块矩形菜地供学生参加劳动实践,菜地的一边靠墙,另外三边用木栏围成,木栏总长为40m.如图所示,设矩形一边长为xm,另一边长为ym,当x在一定范围内变化时,y随x的变化而变化,则y与x满足的函数关系是( )
A.正比例函数关系 B.一次函数关系
C.反比例函数关系 D.二次函数关系
二十六.二次函数图象与系数的关系(共2小题)
29.(2022•日照)已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为x=,且经过点(﹣1,0).下列结论:①3a+b=0;②若点(,y1),(3,y2)是抛物线上的两点,则y1<y2;③10b﹣3c=0;④若y≤c,则0≤x≤3.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
30.(2022•青岛)已知二次函数y=ax2+bx+c的图象开口向下,对称轴为直线x=﹣1,且经过点(﹣3,0),则下列结论正确的是( )
A.b>0 B.c<0 C.a+b+c>0 D.3a+c=0
二十七.抛物线与x轴的交点(共1小题)
31.(2022•潍坊)抛物线y=x2+x+c与x轴只有一个公共点,则c的值为( )
A. B. C.﹣4 D.4
二十八.专题:正方体相对两个面上的文字(共1小题)
32.(2022•枣庄)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“亮”字所在面相对的面上的汉字是( )
A.青 B.春 C.梦 D.想
二十九.方向角(共1小题)
33.(2022•烟台)如图,某海域中有A,B,C三个小岛,其中A在B的南偏西40°方向,C在B的南偏东35°方向,且B,C到A的距离相等,则小岛C相对于小岛A的方向是( )
A.北偏东70° B.北偏东75° C.南偏西70° D.南偏西20°
三十.平行线的性质(共4小题)
34.(2022•菏泽)如图所示,将一矩形纸片沿AB折叠,已知∠ABC=36°,则∠D1AD=( )
A.48° B.66° C.72° D.78°
35.(2022•济南)如图,AB∥CD,点E在AB上,EC平分∠AED,若∠1=65°,则∠2的度数为( )
A.45° B.50° C.57.5° D.65°
36.(2022•潍坊)如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面AB与CD平行,入射光线l与出射光线m平行.若入射光线l与镜面AB的夹角∠1=40°10',则∠6的度数为( )
A.100°40' B.99°80' C.99°40' D.99°20'
37.(2022•滨州)如图,在弯形管道ABCD中,若AB∥CD,拐角∠ABC=122°,则∠BCD的大小为( )
A.58° B.68° C.78° D.122°
三十一.全等三角形的判定与性质(共1小题)
38.(2022•泰安)如图,平行四边形ABCD的对角线AC,BD相交于点O,点E为BC的中点,连接EO并延长交AD于点F,∠ABC=60°,BC=2AB.下列结论:①AB⊥AC;②AD=4OE;③四边形AECF是菱形;④S△BOE=S△ABC,其中正确结论的个数是( )
A.4 B.3 C.2 D.1
三十二.等腰三角形的性质(共1小题)
39.(2022•泰安)如图,l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=25°,∠1=60°.则∠2的度数是( )
A.70° B.65° C.60° D.55°
三十三.多边形内角与外角(共2小题)
40.(2022•烟台)一个正多边形每个内角与它相邻外角的度数比为3:1,则这个正多边形是( )
A.正方形 B.正六边形 C.正八边形 D.正十边形
41.(2022•临沂)如图是某一水塘边的警示牌,牌面是五边形,这个五边形的内角和是( )
A.900° B.720° C.540° D.360°
三十四.矩形的性质(共1小题)
42.(2022•日照)如图,矩形ABCD为一个正在倒水的水杯的截面图,杯中水面与CD的交点为E,当水杯底面BC与水平面的夹角为27°时,∠AED的大小为( )
A.27° B.53° C.57° D.63°
三十五.正方形的性质(共1小题)
43.(2022•青岛)如图,O为正方形ABCD对角线AC的中点,△ACE为等边三角形.若AB=2,则OE的长度为( )
A. B. C. D.
三十六.圆心角、弧、弦的关系(共1小题)
44.(2022•聊城)如图,AB,CD是⊙O的弦,延长AB,CD相交于点P.已知∠P=30°,∠AOC=80°,则的度数是( )
A.30° B.25° C.20° D.10°
三十七.圆周角定理(共1小题)
45.(2022•泰安)如图,AB是⊙O的直径,∠ACD=∠CAB,AD=2,AC=4,则⊙O的半径为( )
A.2 B.3 C.2 D.
三十八.扇形面积的计算(共1小题)
46.(2022•泰安)如图,四边形ABCD中,∠A=60°,AB∥CD,DE⊥AD交AB于点E,以点E为圆心,DE为半径,且DE=6的圆交CD于点F,则阴影部分的面积为( )
A.6π﹣9 B.12π﹣9 C.6π﹣ D.12π﹣
三十九.圆锥的计算(共1小题)
47.(2022•济宁)已知圆锥的母线长8cm,底面圆的直径6cm,则这个圆锥的侧面积是( )
A.96πcm2 B.48πcm2 C.33πcm2 D.24πcm2
四十.作图—基本作图(共1小题)
48.(2022•聊城)如图,△ABC中,若∠BAC=80°,∠ACB=70°,根据图中尺规作图的痕迹推断,以下结论错误的是( )
A.∠BAQ=40° B.DE=BD C.AF=AC D.∠EQF=25°
四十一.作图—复杂作图(共1小题)
49.(2022•威海)过直线l外一点P作直线l的垂线PQ.下列尺规作图错误的是( )
A.
B.
C.
D.
四十二.翻折变换(折叠问题)(共1小题)
50.(2022•济宁)如图,三角形纸片ABC中,∠BAC=90°,AB=2,AC=3.沿过点A的直线将纸片折叠,使点B落在边BC上的点D处;再折叠纸片,使点C与点D重合,若折痕与AC的交点为E,则AE的长是( )
A. B. C. D.
四十三.坐标与图形变化-旋转(共3小题)
51.(2022•枣庄)如图,将△ABC先向右平移1个单位,再绕点P按顺时针方向旋转90°,得到△A′B′C′,则点B的对应点B′的坐标是( )
A.(4,0) B.(2,﹣2) C.(4,﹣1) D.(2,﹣3)
52.(2022•聊城)如图,在直角坐标系中,线段A1B1是将△ABC绕着点P(3,2)逆时针旋转一定角度后得到的△A1B1C1的一部分,则点C的对应点C1的坐标是( )
A.(﹣2,3) B.(﹣3,2) C.(﹣2,4) D.(﹣3,3)
53.(2022•青岛)如图,将△ABC先向右平移3个单位,再绕原点O旋转180°,得到△A'B'C',则点A的对应点A'的坐标是( )
A.(2,0) B.(﹣2,﹣3) C.(﹣1,﹣3) D.(﹣3,﹣1)
四十四.黄金分割(共1小题)
54.(2022•潍坊)秦兵马俑的发现被誉为“世界第八大奇迹”,兵马俑的眼睛到下巴的距离与头顶到下巴的距离之比约为,下列估算正确的是( )
A.0<< B.<< C.<<1 D.>1
四十五.位似变换(共1小题)
55.(2022•威海)由12个有公共顶点O的直角三角形拼成如图所示的图形,∠AOB=∠BOC=∠COD=…=∠LOM=30°.若S△AOB=1,则图中与△AOB位似的三角形的面积为( )
A.()3 B.()7 C.()6 D.()6
四十六.简单组合体的三视图(共1小题)
56.(2022•聊城)如图,该几何图形是沿着圆锥体的轴切割后得到的“半个”圆锥体,它的左视图是( )
A. B.
C. D.
四十七.由三视图判断几何体(共1小题)
57.(2022•济南)如图是某几何体的三视图,该几何体是( )
A.圆柱 B.球 C.圆锥 D.正四棱柱
四十八.频数(率)分布直方图(共1小题)
58.(2022•聊城)“俭以养德”是中华民族的优秀传统,时代中学为了对全校学生零花钱的使用进行正确引导,随机抽取50名学生,对他们一周的零花钱数额进行了统计,并根据调查结果绘制了不完整的频数分布表和扇形统计图,如图所示:
组别
零花钱数额x/元
频数
一
x≤10
二
10<x≤15
12
三
15<x≤20
15
四
20<x≤25
a
五
x>25
5
关于这次调查,下列说法正确的是( )
A.总体为50名学生一周的零花钱数额
B.五组对应扇形的圆心角度数为36°
C.在这次调查中,四组的频数为6
D.若该校共有学生1500人,则估计该校零花钱数额不超过20元的人数约为1200人
四十九.折线统计图(共2小题)
59.(2022•菏泽)射击比赛中,某队员的10次射击成绩如图所示,则下列结论错误的是( )
A.平均数是9环 B.中位数是9环
C.众数是9环 D.方差是0.8
60.(2022•泰安)某次射击比赛,甲队员的成绩如图,根据此统计图,下列结论中错误的是( )
A.最高成绩是9.4环 B.平均成绩是9环
C.这组成绩的众数是9环 D.这组成绩的方差是8.7
山东省2022年各地区中考数学真题按题型分层分类汇编-02选择题基础题
参考答案与试题解析
一.科学记数法—表示较大的数(共1小题)
1.(2022•济南)神舟十三号飞船在近地点高度200000m,远地点高度356000m的轨道上驻留了6个月后,于2022年4月16日顺利返回.将数字356000用科学记数法表示为( )
A.3.56×105 B.0.356×106 C.3.56×106 D.35.6×104
【解答】解:356000=3.56×105,
故选:A.
二.科学记数法—表示较小的数(共1小题)
2.(2022•青岛)我国古代数学家祖冲之推算出π的近似值为,它与π的误差小于0.0000003.将0.0000003用科学记数法可以表示为( )
A.3×10﹣7 B.0.3×10﹣6 C.3×10﹣6 D.3×107
【解答】解:用科学记数法可以表示0.0000003得:3×10﹣7;
故选:A.
三.算术平方根(共1小题)
3.(2022•烟台)如图,正方形ABCD边长为1,以AC为边作第2个正方形ACEF,再以CF为边作第3个正方形FCGH,…,按照这样的规律作下去,第6个正方形的边长为( )
A.(2)5 B.(2)6 C.()5 D.()6
【解答】解:由题知,第1个正方形的边长AB=1,
根据勾股定理得,第2个正方形的边长AC=,
根据勾股定理得,第3个正方形的边长CF=()2,
根据勾股定理得,第4个正方形的边长GF=()3,
根据勾股定理得,第5个正方形的边长GN=()4,
根据勾股定理得,第6个正方形的边长=()5.
故选C.
四.实数(共1小题)
4.(2022•日照)在实数,x0(x≠0),cos30°,中,有理数的个数是( )
A.1个 B.2个 C.3个 D.4个
【解答】解:在实数,x0(x≠0)=1,cos30°=,=2中,有理数是,x0(x≠0),
所以,有理数的个数是2,
故选:B.
五.实数与数轴(共1小题)
5.(2022•济南)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是( )
A.ab>0 B.a+b>0 C.|a|<|b| D.a+1<b+1
【解答】解:A选项,∵a<0,b>0,
∴ab<0,故该选项不符合题意;
B选项,∵a<0,b>0,|a|>|b|,
∴a+b<0,故该选项不符合题意;
C选项,|a|>|b|,故该选项不符合题意;
D选项,∵a<b,
∴a+1<b+1,故该选项符合题意;
故选:D.
六.规律型:图形的变化类(共1小题)
6.(2022•济宁)如图,用相同的圆点按照一定的规律拼出图形.第一幅图4个圆点,第二幅图7个圆点,第三幅图10个圆点,第四幅图13个圆点……按照此规律,第一百幅图中圆点的个数是( )
A.297 B.301 C.303 D.400
【解答】解:观察图形可知:
摆第1个图案需要4个圆点,即4+3×0;
摆第2个图案需要7个圆点,即4+3=4+3×1;
摆第3个图案需要10个圆点,即4+3+3=4+3×2;
摆第4个图案需要13个圆点,即4+3+3+3=4+3×3;
…
第n个图摆放圆点的个数为:4+3(n﹣1)=3n+1,
∴第100个图放圆点的个数为:3×100+1=301.
故选:B.
七.同底数幂的除法(共2小题)
7.(2022•日照)下列运算正确的是( )
A.a6÷a2=a3 B.a4•a2=a6 C.(a2)3=a5 D.a3+a3=a6
【解答】解:A、a6÷a2=a4,故A不符合题意;
B、a4•a2=a6,故B符合题意;
C、(a2)3=a6,故C不符合题意;
D、a3+a3=2a3,故D不符合题意;
故选:B.
8.(2022•烟台)下列计算正确的是( )
A.2a+a=3a2 B.a3•a2=a6 C.a5﹣a3=a2 D.a3÷a2=a
【解答】解:A、2a+a=3a,故A不符合题意;
B、a3•a2=a5,故B不符合题意;
C、a5与a3不能合并,故C不符合题意;
D、a3÷a2=a,故D符合题意;
故选:D.
八.分式的化简求值(共1小题)
9.(2022•济南)若m﹣n=2,则代数式•的值是( )
A.﹣2 B.2 C.﹣4 D.4
【解答】解:原式=
=2(m﹣n).
当m﹣n=2时.原式=2×2=4.
故选:D.
九.零指数幂(共1小题)
10.(2022•济宁)下列各式运算正确的是( )
A.﹣3(x﹣y)=﹣3x+y B.x3•x2=x6
C.(π﹣3.14)0=1 D.(x3)2=x5
【解答】解:∵﹣3(x﹣y)=﹣3x+3y,
∴A选项的结论不正确;
∵x3•x2=x3+2=x5,
∴B选项的结论不正确;
∵(π﹣3.14)0=1,
∴C选项的结论正确;
∵(x3)2=x6,
∴D选项的结论不正确,
故选:C.
一十.二次根式的性质与化简(共1小题)
11.(2022•聊城)射击时,子弹射出枪口时的速度可用公式v=进行计算,其中a为子弹的加速度,s为枪筒的长.如果a=5×105m/s2,s=0.64m,那么子弹射出枪口时的速度(用科学记数法表示)为( )
A.0.4×103m/s B.0.8×103m/s C.4×102m/s D.8×102m/s
【解答】解:v===8×102(m/s),
故选:D.
一十一.二次根式的混合运算(共1小题)
12.(2022•青岛)计算(﹣)×的结果是( )
A. B.1 C. D.3
【解答】解:(﹣)×
=﹣
=﹣
=3﹣2
=1,
故选:B.
一十二.由实际问题抽象出二元一次方程组(共1小题)
13.(2022•日照)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是( )
A. B.
C. D.
【解答】解:设木头长为x尺,绳子长为y尺,
由题意可得.
故选:D.
一十三.解一元二次方程-配方法(共1小题)
14.(2022•聊城)用配方法解一元二次方程3x2+6x﹣1=0时,将它化为(x+a)2=b的形式,则a+b的值为( )
A. B. C.2 D.
【解答】解:∵3x2+6x﹣1=0,
∴3x2+6x=1,
x2+2x=,
则x2+2x+1=,即(x+1)2=,
∴a=1,b=,
∴a+b=.
故选:B.
一十四.由实际问题抽象出分式方程(共1小题)
15.(2022•潍坊)观察我国原油进口月度走势图,2022年4月原油进口量比2021年4月增加267万吨,当月增速为6.6%(计算方法:×100%≈6.6%).2022年3月当月增速为﹣14.0%,设2021年3月原油进口量为x万吨,下列算法正确的是( )
A.×100%=﹣14.0%
B.×100%=﹣14.0%
C.×100%=﹣14.0%
D.×100%=﹣14.0%
【解答】解:设2021年3月原油进口量为x万吨,
由题意得:×100%=﹣14%.
故选:D.
一十五.解一元一次不等式(共1小题)
16.(2022•聊城)关于x,y的方程组的解中x与y的和不小于5,则k的取值范围为( )
A.k≥8 B.k>8 C.k≤8 D.k<8
【解答】解:把两个方程相减,可得x+y=k﹣3,
根据题意得:k﹣3≥5,
解得:k≥8.
所以k的取值范围是k≥8.
故选:A.
一十六.解一元一次不等式组(共1小题)
17.(2022•潍坊)不等式组的解集在数轴上表示正确的是( )
A.
B.
C.
D.
【解答】解:不等式组,
由①得:x≥﹣1,
由②得:x<1,
∴不等式组的解集为﹣1≤x<1,
表示在数轴上,如图所示:
.
故选:B.
一十七.一元一次不等式组的整数解(共1小题)
18.(2022•济宁)若关于x的不等式组仅有3个整数解,则a的取值范围是( )
A.﹣4≤a<﹣2 B.﹣3<a≤﹣2 C.﹣3≤a≤﹣2 D.﹣3≤a<﹣2
【解答】解:解不等式x﹣a>0得:x>a,
解不等式7﹣2x>5得:x<1,
∵关于x的不等式组仅有3个整数解,
∴﹣3≤a<﹣2,
故选:D.
一十八.函数值(共1小题)
19.(2022•枣庄)已知y1和y2均是以x为自变量的函数,当x=n时,函数值分别是N1和N2,若存在实数n,使得N1+N2=1,则称函数y1和y2是“和谐函数”.则下列函数y1和y2不是“和谐函数”的是( )
A.y1=x2+2x和y2=﹣x+1 B.y1=和y2=x+1
C.y1=﹣和y2=﹣x﹣1 D.y1=x2+2x和y2=﹣x﹣1
【解答】解:A、令y1+y2=1,
则x2+2x﹣x+1=1,
整理得:x2+x=0,
解得:x1=0,x2=﹣1,
∴函数y1和y2是“和谐函数”,故A不符合题意;
B、令y1+y2=1,
则+x+1=1,
整理得:x2+1=0,
此方程无解,
∴函数y1和y2不是“和谐函数”,故B符合题意;
C、令y1+y2=1,
则﹣﹣x﹣1=1,
整理得:x2+2x+1=0,
解得:x1=﹣1,x2=﹣1,
∴函数y1和y2是“和谐函数”,故C不符合题意;
D、令y1+y2=1,
则x2+2x﹣x﹣1=1,
整理得:x2+x﹣2=0,
解得:x1=1,x2=﹣2,
∴函数y1和y2是“和谐函数”,故D不符合题意;
故选:B.
一十九.函数的图象(共3小题)
20.(2022•烟台)周末,父子二人在一段笔直的跑道上练习竞走,两人分别从跑道两端开始往返练习.在同一直角坐标系中,父子二人离同一端的距离s(米)与时间t(秒)的关系图象如图所示.若不计转向时间,按照这一速度练习20分钟,迎面相遇的次数为( )
A.12 B.16 C.20 D.24
【解答】解:由图可知,父子速度分别为:200×2÷120=(米/秒)和200÷100=2(米/秒),
∴20分钟父子所走路程和为20×60×(+2)=6400(米),
父子二人第一次迎面相遇时,两人所走路程之和为200米,
父子二人第二次迎面相遇时,两人所走路程之和为200×2+200=600(米),
父子二人第三次迎面相遇时,两人所走路程之和为400×2+200=1000(米),
父子二人第四次迎面相遇时,两人所走路程之和为600×2+200=1400(米),
…
父子二人第n次迎面相遇时,两人所走路程之和为200(n﹣1)×2+200=(400n﹣200)米,
令400n﹣200=6400,
解得n=16.5,
∴父子二人迎面相遇的次数为16,
故选:B.
21.(2022•潍坊)地球周围的大气层阻挡了紫外线和宇宙射线对地球生命的伤害,同时产生一定的大气压,海拔不同,大气压不同.观察图中数据,你发现( )
A.海拔越高,大气压越大
B.图中曲线是反比例函数的图象
C.海拔为4千米时,大气压约为70千帕
D.图中曲线表达了大气压和海拔两个量之间的变化关系
【解答】解:海拔越高大气压越低,A选项不符合题意;
代值图中点(2,80)和(4,60),由横、纵坐标之积不同,说明图中曲线不是反比例函数的图象,B选项不符合题意;
海拔为4千米时,图中读数可知大气压应该是60千帕左右,C选项不符合题意;
图中曲线表达的是大气压与海拔两个量之间的变化关系,D选项符合题意.
故选:D.
22.(2022•临沂)甲、乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y(单位:km)与时间x(单位:h)的对应关系如图所示,下列说法中不正确的是( )
A.甲车行驶到距A城240km处,被乙车追上
B.A城与B城的距离是300km
C.乙车的平均速度是80km/h
D.甲车比乙车早到B城
【解答】解:由题意可知,A城与B城的距离是300km,故选项B不合题意;
甲车的平均速度是:300÷5=60(km/h),
乙车的平均速度是:240÷(4﹣1)=80(km/h),故选项C不合题意;
设乙车出发x小时后追上甲车,则60(x+1)=80x,
解得x=3,
60×4=240(km),即甲车行驶到距A城240km处,被乙车追上,故选项A不合题意;
由题意可知,乙车比甲车早到B城,故选项D符合题意.
故选:D.
二十.动点问题的函数图象(共1小题)
23.(2022•潍坊)如图,在▱ABCD中,∠A=60°,AB=2,AD=1,点E,F在▱ABCD的边上,从点A同时出发,分别沿A→B→C和A→D→C的方向以每秒1个单位长度的速度运动,到达点C时停止,线段EF扫过区域的面积记为y,运动时间记为x,能大致反映y与x之间函数关系的图象是( )
A. B.
C. D.
【解答】解:过点F作FH⊥AB于H,
当0≤x≤1时,如图1,
在Rt△FAH中,AF=x,∠A=60°,
则FH=AF•sinA=x,
∴线段EF扫过区域的面积y=x•x=x2,图象是开口向上的抛物线,
当1<x≤2时,如图2,过点D作DP⊥AB于P,
则DP=AD•sinA=,
∴线段EF扫过区域的面积y=×(x﹣1+x)×=x﹣,图象是y随x的增大而增大的线段,
当2<x≤3时,如图3,
过点E作EG⊥CD于G,
则CE=CF=3﹣x,
∴EG=(3﹣x),
∴线段EF扫过区域的面积y=2×﹣×(3﹣x)×(3﹣x)=﹣(3﹣x)2,图象是开口向下的抛物线,
故选:A.
二十一.一次函数的应用(共1小题)
24.(2022•日照)下列说法正确的是( )
A.一元一次方程﹣1=x的解是x=2
B.在连续5次数学测试中,两名同学的平均成绩相同,则方差较大的同学的成绩更稳定
C.从5名男生,2名女生中抽取3人参加活动,至少会有1名男生被抽中
D.将一次函数y=﹣2x+5的图象向上平移两个单位,则平移后的函数解析式为y=﹣2x+1
【解答】解:一元一次方程﹣1=x的解是x=﹣2,故A错误,不符合题意;
在连续5次数学测试中,两名同学的平均成绩相同,则方差较小的同学的成绩更稳定,故B错误,不符合题意;
从5名男生,2名女生中抽取3人参加活动,至少会有1名男生被抽中,故C正确,符合题意;
将一次函数y=﹣2x+5的图象向上平移两个单位,则平移后的函数解析式为y=﹣2x+7,故D错误,不符合题意;
故选:C.
二十二.反比例函数的图象(共1小题)
25.(2022•菏泽)根据如图所示的二次函数y=ax2+bx+c的图象,判断反比例函数y=与一次函数y=bx+c的图象大致是( )
A. B. C. D.
【解答】解:由二次函数图象可知a>0,c<0,
由对称轴x=﹣>0,可知b<0,
所以反比例函数y=的图象在一、三象限,一次函数y=bx+c经过二、三、四象限.
故选:A.
二十三.反比例函数系数k的几何意义(共1小题)
26.(2022•日照)如图,矩形OABC与反比例函数y1=(k1是非零常数,x>0)的图象交于点M,N,与反比例函数y2=(k2是非零常数,x>0)的图象交于点B,连接OM,ON.若四边形OMBN的面积为3,则k1﹣k2=( )
A.3 B.﹣3 C. D.
【解答】解:∵点M、N均是反比例函数y1=(k1是非零常数,x>0)的图象上,
∴S△OAM=S△OCN=k1,
∵矩形OABC的顶点B在反比例函数y2=(k2是非零常数,x>0)的图象上,
∴S矩形OABC=k2,
∴S矩形OMBN=S矩形OABC﹣S△OAM﹣S△OCN=3,
∴k2﹣k1=3,
∴k1﹣k2=﹣3,
故选:B.
二十四.反比例函数图象上点的坐标特征(共1小题)
27.(2022•枣庄)如图,正方形ABCD的边长为5,点A的坐标为(4,0),点B在y轴上,若反比例函数y=(k≠0)的图象过点C,则k的值为( )
A.4 B.﹣4 C.﹣3 D.3
【解答】解:如图,过点C作CE⊥y轴于E,在正方形ABCD中,AB=BC,∠ABC=90°,
∴∠ABO+∠CBE=90°,
∵∠OAB+∠ABO=90°,
∴∠OAB=∠CBE,
∵点A的坐标为(4,0),
∴OA=4,
∵AB=5,
∴OB==3,
在△ABO和△BCE中,
,
∴△ABO≌△BCE(AAS),
∴OA=BE=4,CE=OB=3,
∴OE=BE﹣OB=4﹣3=1,
∴点C的坐标为(﹣3,1),
∵反比例函数y=(k≠0)的图象过点C,
∴k=xy=﹣3×1=﹣3,
故选:C.
二十五.二次函数的定义(共1小题)
28.(2022•济南)某学校要建一块矩形菜地供学生参加劳动实践,菜地的一边靠墙,另外三边用木栏围成,木栏总长为40m.如图所示,设矩形一边长为xm,另一边长为ym,当x在一定范围内变化时,y随x的变化而变化,则y与x满足的函数关系是( )
A.正比例函数关系 B.一次函数关系
C.反比例函数关系 D.二次函数关系
【解答】解:由题意得,y=40﹣2x,
所以y与x是一次函数关系,
故选:B.
二十六.二次函数图象与系数的关系(共2小题)
29.(2022•日照)已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为x=,且经过点(﹣1,0).下列结论:①3a+b=0;②若点(,y1),(3,y2)是抛物线上的两点,则y1<y2;③10b﹣3c=0;④若y≤c,则0≤x≤3.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
【解答】解:∵对称轴x=﹣=,
∴b=﹣3a,
∴3a+b=0,①正确;
∵抛物线开口向上,点(,y1)到对称轴的距离小于点(3,y2)的距离,
∴y1<y2,故②正确;
∵经过点(﹣1,0),
∴a﹣b+c=0,
∵对称轴x=﹣=,
∴a=﹣b,
∴﹣b﹣b+c=0,
∴3c=4b,
∴4b﹣3c=0,故③错误;
∵对称轴x=,
∴点(0,c)的对称点为(3,c),
∵开口向上,
∴y≤c时,0≤x≤3.故④正确;
故选:C.
30.(2022•青岛)已知二次函数y=ax2+bx+c的图象开口向下,对称轴为直线x=﹣1,且经过点(﹣3,0),则下列结论正确的是( )
A.b>0 B.c<0 C.a+b+c>0 D.3a+c=0
【解答】解:选项A:∵抛物线开口向下,
∴a<0.
∵对称轴为直线x=﹣1,
∴﹣=﹣1.
∴b=2a.
∴b<0.故选项A错误;
选项B:设抛物线与x轴的另一个交点为(x1,0),
则抛物线的对称轴可表示为x=(x1﹣3),
∴﹣1=(x1﹣3),解得x1=1,
∴抛物线与x轴的两个交点为(1,0)和(﹣3,0).
又∵抛物线开口向下,
∴抛物线与y轴交于正半轴.
∴c>0.故选项B错误.
选项C:∵抛物线过点(1,0).
∴a+b+c=0.故选项C错误;
选项D:∵b=2a,且a+b+c=0,
∴3a+c=0.故选项D正确.
故选:D.
二十七.抛物线与x轴的交点(共1小题)
31.(2022•潍坊)抛物线y=x2+x+c与x轴只有一个公共点,则c的值为( )
A. B. C.﹣4 D.4
【解答】解:∵抛物线y=x2+x+c与x轴只有一个公共点,
∴方程x2+x+c=0有两个相等的实数根,
∴Δ=b2﹣4ac=12﹣4×1•c=0,
∴c=.
故选:B.
二十八.专题:正方体相对两个面上的文字(共1小题)
32.(2022•枣庄)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“亮”字所在面相对的面上的汉字是( )
A.青 B.春 C.梦 D.想
【解答】解:在原正方体中,与“亮”字所在面相对的面上的汉字是:想,
故选:D.
二十九.方向角(共1小题)
33.(2022•烟台)如图,某海域中有A,B,C三个小岛,其中A在B的南偏西40°方向,C在B的南偏东35°方向,且B,C到A的距离相等,则小岛C相对于小岛A的方向是( )
A.北偏东70° B.北偏东75° C.南偏西70° D.南偏西20°
【解答】解:如图:
由题意得:
∠ABC=∠ABE+∠CBE=40°+35°=75°,AD∥BE,AB=AC,
∴∠ABC=∠C=75°,
∴∠BAC=180°﹣∠ABC﹣∠C=30°,
∵AD∥BE,
∴∠DAB=∠ABE=40°,
∴∠DAC=∠DAB+∠BAC=40°+30°=70°,
∴小岛C相对于小岛A的方向是北偏东70°,
故选:A.
三十.平行线的性质(共4小题)
34.(2022•菏泽)如图所示,将一矩形纸片沿AB折叠,已知∠ABC=36°,则∠D1AD=( )
A.48° B.66° C.72° D.78°
【解答】解:根据题意可得:∠BAD=∠BAD1,
∵矩形纸片的对边平行,即ED∥BC,
∴∠ABC+∠BAD=180°,
∵∠ABC=36°,
∴∠BAD=180°﹣36°=144°,
∴∠BAD1=∠BAD=144°,
∴∠D1AD=360°﹣∠BAD1﹣∠BAD=360°﹣144°﹣144°=72°.
故选:C.
35.(2022•济南)如图,AB∥CD,点E在AB上,EC平分∠AED,若∠1=65°,则∠2的度数为( )
A.45° B.50° C.57.5° D.65°
【解答】解:∵AB∥CD,
∴∠AEC=∠1=65°.
∵EC平分∠AED,
∴∠AED=2∠AEC=130°.
∴∠2=180°﹣∠AED=50°.
故选:B.
36.(2022•潍坊)如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面AB与CD平行,入射光线l与出射光线m平行.若入射光线l与镜面AB的夹角∠1=40°10',则∠6的度数为( )
A.100°40' B.99°80' C.99°40' D.99°20'
【解答】解:∵入射角等于反射角,∠1=40°10',
∴∠2=∠1=40°10',
∵∠1+∠2+∠5=180°,
∴∠5=180°﹣40°10'﹣40°10'=99°40',
∵入射光线l与出射光线m平行,
∴∠6=∠5=99°40'.
故选:C.
37.(2022•滨州)如图,在弯形管道ABCD中,若AB∥CD,拐角∠ABC=122°,则∠BCD的大小为( )
A.58° B.68° C.78° D.122°
【解答】解:∵AB∥CD,
∴∠ABC+∠BCD=180°,
∵∠ABC=122°,
∴∠BCD=180°﹣122°=58°,
故选:A.
三十一.全等三角形的判定与性质(共1小题)
38.(2022•泰安)如图,平行四边形ABCD的对角线AC,BD相交于点O,点E为BC的中点,连接EO并延长交AD于点F,∠ABC=60°,BC=2AB.下列结论:①AB⊥AC;②AD=4OE;③四边形AECF是菱形;④S△BOE=S△ABC,其中正确结论的个数是( )
A.4 B.3 C.2 D.1
【解答】解:∵点E为BC的中点,
∴BC=2BE=2CE,
又∵BC=2AB,
∴AB=BE,
∵∠ABC=60°,
∴△ABE是等边三角形,
∴∠BAE=∠BEA=60°,
∴∠EAC=∠ECA=30°,
∴∠BAC=∠BAE+∠EAC=90°,
即AB⊥AC,故①正确;
在平行四边形ABCD中,AD∥BC,AD=BC,AO=CO,
∴∠CAD=∠ACB,
在△AOF和△COE中,
,
∴△AOF≌△COE(ASA),
∴AF=CE,
∴四边形AECF是平行四边形,
又∵AB⊥AC,点E为BC的中点,
∴AE=CE,
∴平行四边形AECF是菱形,故③正确;
∴AC⊥EF,
在Rt△COE中,∠ACE=30°,
∴OE=CE=BC=AD,故②正确;
在平行四边形ABCD中,OA=OC,
又∵点E为BC的中点,
∴S△BOE=S△BOC=S△ABC,故④正确;
正确的结论由4个,
故选:A.
三十二.等腰三角形的性质(共1小题)
39.(2022•泰安)如图,l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=25°,∠1=60°.则∠2的度数是( )
A.70° B.65° C.60° D.55°
【解答】解:如图,
∵AB=BC,∠C=25°,
∴∠C=∠BAC=25°,
∵l1∥l2,∠1=60°,
∴∠BEA=180°﹣60°﹣25°=95°,
∵∠BEA=∠C+∠2,
∴∠2=95°﹣25°=70°.
故选:A.
三十三.多边形内角与外角(共2小题)
40.(2022•烟台)一个正多边形每个内角与它相邻外角的度数比为3:1,则这个正多边形是( )
A.正方形 B.正六边形 C.正八边形 D.正十边形
【解答】解:∵一个正多边形每个内角与它相邻外角的度数比为3:1,
∴设这个外角是x°,则内角是3x°,
根据题意得:x+3x=180,
解得:x=45,
360°÷45°=8(边),
故选:C.
41.(2022•临沂)如图是某一水塘边的警示牌,牌面是五边形,这个五边形的内角和是( )
A.900° B.720° C.540° D.360°
【解答】解:(5﹣2)×180°=540°,
故选:C.
三十四.矩形的性质(共1小题)
42.(2022•日照)如图,矩形ABCD为一个正在倒水的水杯的截面图,杯中水面与CD的交点为E,当水杯底面BC与水平面的夹角为27°时,∠AED的大小为( )
A.27° B.53° C.57° D.63°
【解答】解:如图,
∵AE∥BF,
∴∠EAB=∠ABF,
∵四边形ABCD是矩形,
∴AB∥CD,∠ABC=90°,
∴∠ABF+27°=90°,
∴∠ABF=63°,
∴∠EAB=63°,
∵AB∥CD,
∴∠AED=∠EAB=63°.
故选:D.
三十五.正方形的性质(共1小题)
43.(2022•青岛)如图,O为正方形ABCD对角线AC的中点,△ACE为等边三角形.若AB=2,则OE的长度为( )
A. B. C. D.
【解答】解;∵四边形ABCD为正方形,AB=2,
∴AC=2,
∵O为正方形ABCD对角线AC的中点,△ACE为等边三角形,
∴∠AOE=90°,
∴AC=AE=2,AO=,
∴OE=×=.
故选:B.
三十六.圆心角、弧、弦的关系(共1小题)
44.(2022•聊城)如图,AB,CD是⊙O的弦,延长AB,CD相交于点P.已知∠P=30°,∠AOC=80°,则的度数是( )
A.30° B.25° C.20° D.10°
【解答】解:连接BC,
∵∠AOC=80°,
∴∠ABC=40°,
∵∠P=30°,
∴∠BCD=10°,
∴的度数20°.
故选:C.
三十七.圆周角定理(共1小题)
45.(2022•泰安)如图,AB是⊙O的直径,∠ACD=∠CAB,AD=2,AC=4,则⊙O的半径为( )
A.2 B.3 C.2 D.
【解答】解:方法一:
连接CO并延长CO交⊙O于点E,连接AE,
∵OA=OC,
∴∠OAC=∠OCA,
∵∠ACD=∠CAB,
∴∠ACD=∠ACO,
∴AE=AD=2,
∵CE是直径,
∴∠EAC=90°,
在Rt△EAC中,AE=2,AC=4,
∴EC==2,
∴⊙O的半径为.
方法二:连接BC,
∵AB是直径,
∴∠ACB=90°,
∵∠ACD=∠CAB,
∴=,
∴AD=BC=2,
在Rt△ABC中,AB==2,
∴圆O的半径为.
故选:D.
三十八.扇形面积的计算(共1小题)
46.(2022•泰安)如图,四边形ABCD中,∠A=60°,AB∥CD,DE⊥AD交AB于点E,以点E为圆心,DE为半径,且DE=6的圆交CD于点F,则阴影部分的面积为( )
A.6π﹣9 B.12π﹣9 C.6π﹣ D.12π﹣
【解答】解:过点E作EG⊥DF交DF于点G,
∵∠A=60°,AB∥CD,DE⊥AD交AB于点E,
∴∠GDE=∠DEA=30°,
∵DE=EF,
∴∠EDF=∠EFD=30°,
∴∠DEF=120°,
∵∠GDE=30°,DE=6,
∴GE=3,DG=3,
∴DF=6,
阴影部分的面积=﹣×6×3=12π﹣9,
故选:B.
三十九.圆锥的计算(共1小题)
47.(2022•济宁)已知圆锥的母线长8cm,底面圆的直径6cm,则这个圆锥的侧面积是( )
A.96πcm2 B.48πcm2 C.33πcm2 D.24πcm2
【解答】解:∵底面圆的直径为6cm,
∴底面圆的半径为3cm,
∴圆锥的侧面积=×8×2π×3=24πcm2.
故选:D.
四十.作图—基本作图(共1小题)
48.(2022•聊城)如图,△ABC中,若∠BAC=80°,∠ACB=70°,根据图中尺规作图的痕迹推断,以下结论错误的是( )
A.∠BAQ=40° B.DE=BD C.AF=AC D.∠EQF=25°
【解答】解:A.由作图可知,AQ平分∠BAC,
∴∠BAP=∠CAP=∠BAC=40°,
故选项A正确,不符合题意;
B.由作图可知,MQ是BC的垂直平分线,
∴∠DEB=90°,
∵∠B=30°,
∴DE=BD,
故选项B正确,不符合题意;
C.∵∠B=30°,∠BAP=40°,
∴∠AFC=70°,
∵∠C=70°,
∴AF=AC,
故选项C正确,不符合题意;
D.∵∠EFQ=∠AFC=70°,∠QEF=90°,
∴∠EQF=20°;
故选项D错误,符合题意.
故选:D.
四十一.作图—复杂作图(共1小题)
49.(2022•威海)过直线l外一点P作直线l的垂线PQ.下列尺规作图错误的是( )
A.
B.
C.
D.
【解答】解:选项A,连接PA,PB,QA,QB,
∵PA=PB,
∴点P在线段AB的垂直平分线上,
∵QA=QB,
∴点Q在线段AB的垂直平分线上,
∴PQ⊥l,故此选项不符合题意;
选项B,连接PA,PB,QA,QB,
∵PA=QA,
∴点A在线段PQ的垂直平分线上,
∵PB=QB,
∴点B在线段PQ的垂直平分线上,
∴PQ⊥l,故此选项不符合题意;
选项C,无法证明PQ⊥l,故此选项符合题意;
选项D,连接PA,PB,QA,QB,
∵PA=QA,
∴点A在线段PQ的垂直平分线上,
∵PB=QB,
∴点B在线段PQ的垂直平分线上,
∴PQ⊥l,故此选项不符合题意;
故选:C.
四十二.翻折变换(折叠问题)(共1小题)
50.(2022•济宁)如图,三角形纸片ABC中,∠BAC=90°,AB=2,AC=3.沿过点A的直线将纸片折叠,使点B落在边BC上的点D处;再折叠纸片,使点C与点D重合,若折痕与AC的交点为E,则AE的长是( )
A. B. C. D.
【解答】解:∵沿过点A的直线将纸片折叠,使点B落在边BC上的点D处,
∴AD=AB=2,∠B=∠ADB,
∵折叠纸片,使点C与点D重合,
∴CE=DE,∠C=∠CDE,
∵∠BAC=90°,
∴∠B+∠C=90°,
∴∠ADB+∠CDE=90°,
∴∠ADE=90°,
∴AD2+DE2=AE2,
设AE=x,则CE=DE=3﹣x,
∴22+(3﹣x)2=x2,
解得x=,
∴AE=,
故选:A.
四十三.坐标与图形变化-旋转(共3小题)
51.(2022•枣庄)如图,将△ABC先向右平移1个单位,再绕点P按顺时针方向旋转90°,得到△A′B′C′,则点B的对应点B′的坐标是( )
A.(4,0) B.(2,﹣2) C.(4,﹣1) D.(2,﹣3)
【解答】解:作出旋转后的图形如下:
∴B'点的坐标为(4,﹣1),
故选:C.
52.(2022•聊城)如图,在直角坐标系中,线段A1B1是将△ABC绕着点P(3,2)逆时针旋转一定角度后得到的△A1B1C1的一部分,则点C的对应点C1的坐标是( )
A.(﹣2,3) B.(﹣3,2) C.(﹣2,4) D.(﹣3,3)
【解答】解:∵线段A1B1是将△ABC绕着点P(3,2)逆时针旋转一定角度后得到的△A1B1C1的一部分,
∴A的对应点为A1,
∴∠APA1=90°,
∴旋转角为90°,
∴点C绕点P逆时针旋转90°得到的C1点的坐标为(﹣2,3),
故选:A.
53.(2022•青岛)如图,将△ABC先向右平移3个单位,再绕原点O旋转180°,得到△A'B'C',则点A的对应点A'的坐标是( )
A.(2,0) B.(﹣2,﹣3) C.(﹣1,﹣3) D.(﹣3,﹣1)
【解答】解:由图中可知,点A(﹣2,3),将△ABC先向右平移3个单位,得坐标为:(1,3),再绕原点O旋转180°,得到△A'B'C',则点A的对应点A'的坐标是(﹣1,﹣3).
故选:C.
四十四.黄金分割(共1小题)
54.(2022•潍坊)秦兵马俑的发现被誉为“世界第八大奇迹”,兵马俑的眼睛到下巴的距离与头顶到下巴的距离之比约为,下列估算正确的是( )
A.0<< B.<< C.<<1 D.>1
【解答】解:∵2<3,
∴1<﹣1<2,
∴<<1,
故选C.
四十五.位似变换(共1小题)
55.(2022•威海)由12个有公共顶点O的直角三角形拼成如图所示的图形,∠AOB=∠BOC=∠COD=…=∠LOM=30°.若S△AOB=1,则图中与△AOB位似的三角形的面积为( )
A.()3 B.()7 C.()6 D.()6
【解答】解:在Rt△AOB中,∠AOB=30°,
∵cos∠AOB=,
∴OB=OA,
同理,OC=OB,
∴OC=()2OA,
……
OG=()6OA,
由位似图形的概念可知,△GOH与△AOB位似,且位似比为()6,
∵S△AOB=1,
∴S△GOH=[()6]2=()6,
故选:C.
四十六.简单组合体的三视图(共1小题)
56.(2022•聊城)如图,该几何图形是沿着圆锥体的轴切割后得到的“半个”圆锥体,它的左视图是( )
A. B.
C. D.
【解答】解:从左边看该几何体它是一个斜边在左侧的三角形,
故选:B.
四十七.由三视图判断几何体(共1小题)
57.(2022•济南)如图是某几何体的三视图,该几何体是( )
A.圆柱 B.球 C.圆锥 D.正四棱柱
【解答】解:该几何体的主视图、左视图都是长方形,而俯视图是圆形,因此这个几何体是圆柱,
故选:A.
四十八.频数(率)分布直方图(共1小题)
58.(2022•聊城)“俭以养德”是中华民族的优秀传统,时代中学为了对全校学生零花钱的使用进行正确引导,随机抽取50名学生,对他们一周的零花钱数额进行了统计,并根据调查结果绘制了不完整的频数分布表和扇形统计图,如图所示:
组别
零花钱数额x/元
频数
一
x≤10
二
10<x≤15
12
三
15<x≤20
15
四
20<x≤25
a
五
x>25
5
关于这次调查,下列说法正确的是( )
A.总体为50名学生一周的零花钱数额
B.五组对应扇形的圆心角度数为36°
C.在这次调查中,四组的频数为6
D.若该校共有学生1500人,则估计该校零花钱数额不超过20元的人数约为1200人
【解答】解:总体为全校学生一周的零花钱数额,故选项A不合题意;
五组对应扇形的圆心角度数为:360°×=36°,故选项B符合题意;
在这次调查中,四组的频数为:50×16%=8,故选项C不合题意;
若该校共有学生1500人,则估计该校零花钱数额不超过20元的人数约为:1500×=1110(人),故选项D不合题意,
故选:B.
四十九.折线统计图(共2小题)
59.(2022•菏泽)射击比赛中,某队员的10次射击成绩如图所示,则下列结论错误的是( )
A.平均数是9环 B.中位数是9环
C.众数是9环 D.方差是0.8
【解答】解:这10次射击成绩从小到大排列为:8.4、8.6、8.8、9、9、9、9.2、9.2、9.4、9.4,
故平均数为:(8.4+8.6+8.8+9+9+9+9.2+9.2+9.4+9.4)=9(环),故选项A不合题意;
中位数为:=9(环),故选项B不合题意;
众数是9环,故选项C不合题意;
方差为:[(8.4﹣9)2+(8.6﹣9)2+(8.8﹣9)2+3×(9﹣9)2+2×(9.2﹣9)2+2×(9.4﹣9)2]=0.096,故选项D符合题意.
故选:D.
60.(2022•泰安)某次射击比赛,甲队员的成绩如图,根据此统计图,下列结论中错误的是( )
A.最高成绩是9.4环 B.平均成绩是9环
C.这组成绩的众数是9环 D.这组成绩的方差是8.7
【解答】解:由题意可知,最高成绩是9.4环,故选项A不合题意;
平均成绩是×(9.4×2+8.4+9.2×2+8.8+9×3+8.6)=9(环),故选项B不合题意;
这组成绩的众数是9环,故选项C不合题意;
这组成绩的方差是×[2×(9.4﹣9)2+(8.4﹣9)2+2×(9.2﹣9)2+(8.8﹣9)2+3×(9﹣9)2+(8.6﹣9)2]=0.096,故选项D符合题意.
故选:D.
菁优网APP 菁优网公众号 菁优网小程序
江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-02选择题基础题②: 这是一份江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-02选择题基础题②,共19页。
江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-02选择题基础题①: 这是一份江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-02选择题基础题①,共20页。
四川省2022年各地区中考数学真题按题型分层分类汇编-02选择题(基础题): 这是一份四川省2022年各地区中考数学真题按题型分层分类汇编-02选择题(基础题),共47页。