所属成套资源:多地区中考数学真题按题型知识点分层分类汇编
山东省济南市三年(2020-2022)中考数学真题分类汇编-选择题
展开这是一份山东省济南市三年(2020-2022)中考数学真题分类汇编-选择题,共30页。
山东省济南市三年(2020-2022)中考数学真题分类汇编-选择题
一.相反数(共1小题)
1.(2022•济南)﹣7的相反数是( )
A.﹣7 B.﹣ C.7 D.
二.科学记数法—表示较大的数(共3小题)
2.(2022•济南)神舟十三号飞船在近地点高度200000m,远地点高度356000m的轨道上驻留了6个月后,于2022年4月16日顺利返回.将数字356000用科学记数法表示为( )
A.3.56×105 B.0.356×106 C.3.56×106 D.35.6×104
3.(2021•济南)2021年5月15日,我国“天问一号”探测器在火星成功着陆.火星具有和地球相近的环境,与地球最近时候的距离约55000000km.将数字55000000用科学记数法表示为( )
A.0.55×108 B.5.5×107 C.5.5×106 D.55×106
4.(2020•济南)2020年6月23日,我国的北斗卫星导航系统(BDS)星座部署完成,其中一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为( )
A.0.215×108 B.2.15×107 C.2.15×106 D.21.5×106
三.算术平方根(共1小题)
5.(2021•济南)9的算术平方根是( )
A.3 B.﹣3 C.±3 D.
四.实数的性质(共1小题)
6.(2020•济南)﹣2的绝对值是( )
A.2 B.﹣2 C.±2 D.
五.实数与数轴(共2小题)
7.(2022•济南)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是( )
A.ab>0 B.a+b>0 C.|a|<|b| D.a+1<b+1
8.(2021•济南)实数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是( )
A.a+b>0 B.﹣a>b C.a﹣b<0 D.﹣b<a
六.完全平方公式(共1小题)
9.(2020•济南)下列运算正确的是( )
A.(﹣2a3)2=4a6 B.a2•a3=a6
C.3a+a2=3a3 D.(a﹣b)2=a2﹣b2
七.分式的加减法(共1小题)
10.(2021•济南)计算的结果是( )
A.m+1 B.m﹣1 C.m﹣2 D.﹣m﹣2
八.分式的化简求值(共1小题)
11.(2022•济南)若m﹣n=2,则代数式•的值是( )
A.﹣2 B.2 C.﹣4 D.4
九.一次函数的图象(共1小题)
12.(2020•济南)若m<﹣2,则一次函数y=(m+1)x+1﹣m的图象可能是( )
A. B.
C. D.
一十.反比例函数的性质(共1小题)
13.(2021•济南)反比例函数y=(k≠0)图象的两个分支分别位于第一、三象限,则一次函数y=kx﹣k的图象大致是( )
A. B. C. D.
一十一.二次函数的定义(共1小题)
14.(2022•济南)某学校要建一块矩形菜地供学生参加劳动实践,菜地的一边靠墙,另外三边用木栏围成,木栏总长为40m.如图所示,设矩形一边长为xm,另一边长为ym,当x在一定范围内变化时,y随x的变化而变化,则y与x满足的函数关系是( )
A.正比例函数关系 B.一次函数关系
C.反比例函数关系 D.二次函数关系
一十二.二次函数图象与系数的关系(共2小题)
15.(2022•济南)抛物线y=﹣x2+2mx﹣m2+2与y轴交于点C,过点C作直线l垂直于y轴,将抛物线在y轴右侧的部分沿直线l翻折,其余部分保持不变,组成图形G,点M(m﹣1,y1),N(m+1,y2)为图形G上两点,若y1<y2,则m的取值范围是( )
A.m<﹣1或m>0 B.<m< C.0≤m< D.﹣1<m<1
16.(2020•济南)已知抛物线y=x2+(2m﹣6)x+m2﹣3与y轴交于点A,与直线x=4交于点B,当x>2时,y值随x值的增大而增大.记抛物线在线段AB下方的部分为G(包含A、B两点),M为G上任意一点,设M的纵坐标为t,若t≥﹣3,则m的取值范围是( )
A.m≥ B.≤m≤3 C.m≥3 D.1≤m≤3
一十三.二次函数图象上点的坐标特征(共1小题)
17.(2021•济南)新定义:在平面直角坐标系中,对于点P(m,n)和点P′(m,n′),若满足m≥0时,n′=n﹣4;m<0时,n′=﹣n,则称点P′(m,n′)是点P(m,n)的限变点.例如:点P1(2,5)的限变点是P1′(2,1),点P2(﹣2,3)的限变点是P2′(﹣2,﹣3).若点P(m,n)在二次函数y=﹣x2+4x+2的图象上,则当﹣1≤m≤3时,其限变点P′的纵坐标n'的取值范围是( )
A.﹣2≤n′≤2 B.1≤n′≤3 C.1≤n′≤2 D.﹣2≤n′≤3
一十四.平行线的性质(共3小题)
18.(2022•济南)如图,AB∥CD,点E在AB上,EC平分∠AED,若∠1=65°,则∠2的度数为( )
A.45° B.50° C.57.5° D.65°
19.(2021•济南)如图,AB∥CD,∠A=30°,DA平分∠CDE,则∠DEB的度数为( )
A.45° B.60° C.75° D.80°
20.(2020•济南)如图,AB∥CD,AD⊥AC,∠BAD=35°,则∠ACD=( )
A.35° B.45° C.55° D.70°
一十五.作图—基本作图(共2小题)
21.(2022•济南)如图,矩形ABCD中,分别以A,C为圆心,以大于AC的长为半径作弧,两弧相交于M,N两点,作直线MN分别交AD,BC于点E,F,连接AF,若BF=3,AE=5,以下结论错误的是( )
A.AF=CF B.∠FAC=∠EAC C.AB=4 D.AC=2AB
22.(2020•济南)如图,在△ABC中,AB=AC,分别以点A、B为圆心,以适当的长为半径作弧,两弧分别交于E,F,作直线EF,D为BC的中点,M为直线EF上任意一点.若BC=4,△ABC面积为10,则BM+MD长度的最小值为( )
A. B.3 C.4 D.5
一十六.坐标与图形变化-对称(共1小题)
23.(2020•济南)如图,在平面直角坐标系中,△ABC的顶点都在格点上,如果将△ABC先沿y轴翻折,再向上平移3个单位长度,得到△A'B'C',那么点B的对应点B'的坐标为( )
A.(1,7) B.(0,5) C.(3,4) D.(﹣3,2)
一十七.中心对称图形(共3小题)
24.(2022•济南)下列绿色能源图标中既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
25.(2021•济南)以下是我国部分博物馆标志的图案,其中既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
26.(2020•济南)古钱币是我国悠久的历史文化遗产,以下是在《中国古代钱币》特种邮票中选取的部分图形,其中既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
一十八.相似三角形的判定与性质(共1小题)
27.(2021•济南)如图,在△ABC中,∠ABC=90°,∠C=30°,以点A为圆心,以AB的长为半径作弧交AC于点D,连接BD,再分别以点B,D为圆心,大于BD的长为半径作弧,两弧交于点P,作射线AP交BC于点E,连接DE,则下列结论中不正确的是( )
A.BE=DE B.DE垂直平分线段AC
C. D.BD2=BC•BE
一十九.解直角三角形的应用(共1小题)
28.(2020•济南)如图,△ABC、△FED区域为驾驶员的盲区,驾驶员视线PB与地面BE的夹角∠PBE=43°,视线PE与地面BE的夹角∠PEB=20°,点A,F为视线与车窗底端的交点,AF∥BE,AC⊥BE,FD⊥BE.若A点到B点的距离AB=1.6m,则盲区中DE的长度是( )
(参考数据:sin43°≈0.7,tan43°≈0.9,sin20°≈0.3,tan20°≈0.4)
A.2.6m B.2.8m C.3.4m D.4.5m
二十.解直角三角形的应用-仰角俯角问题(共2小题)
29.(2022•济南)数学活动小组到某广场测量标志性建筑AB的高度.如图,他们在地面上C点测得最高点A的仰角为22°,再向前70m至D点,又测得最高点A的仰角为58°,点C,D,B在同一直线上,则该建筑物AB的高度约为( )
(精确到1m.参考数据:sin22°≈0.37,tan22°≈0.40,sin58°≈0.85,tan58°≈1.60)
A.28m B.34m C.37m D.46m
30.(2021•济南)无人机低空遥感技术已广泛应用于农作物监测.如图,某农业特色品牌示范基地用无人机对一块试验田进行监测作业时,在距地面高度为135m的A处测得试验田右侧边界N处俯角为43°,无人机垂直下降40m至B处,又测得试验田左侧边界M处俯角为35°,则M,N之间的距离为( )(参考数据:tan43°≈0.9,sin43°≈0.7,cos35°≈0.8,tan35°≈0.7,结果保留整数)
A.188m B.269m C.286m D.312m
二十一.简单几何体的三视图(共1小题)
31.(2021•济南)下列几何体中,其俯视图与主视图完全相同的是( )
A. B.
C. D.
二十二.简单组合体的三视图(共1小题)
32.(2020•济南)如图所示的几何体,其俯视图是( )
A. B. C. D.
二十三.由三视图判断几何体(共1小题)
33.(2022•济南)如图是某几何体的三视图,该几何体是( )
A.圆柱 B.球 C.圆锥 D.正四棱柱
二十四.折线统计图(共1小题)
34.(2020•济南)某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是( )
A.每月阅读课外书本数的众数是45
B.每月阅读课外书本数的中位数是58
C.从2到6月份阅读课外书的本数逐月下降
D.从1到7月份每月阅读课外书本数的最大值比最小值多45
二十五.列表法与树状图法(共2小题)
35.(2022•济南)某班级计划举办手抄报展览,确定了“5G时代”、“北斗卫星”、“高铁速度”三个主题,若小明和小亮每人随机选择其中一个主题,则他们恰好选择同一个主题的概率是( )
A. B. C. D.
36.(2021•济南)某学校组织学生到社区开展公益宣传活动,成立了“垃圾分类”“文明出行”“低碳环保”三个宣传队,如果小华和小丽每人随机选择参加其中一个宣传队,则她们恰好选到同一个宣传队的概率是( )
A. B. C. D.
山东省济南市三年(2020-2022)中考数学真题分类汇编-选择题
参考答案与试题解析
一.相反数(共1小题)
1.(2022•济南)﹣7的相反数是( )
A.﹣7 B.﹣ C.7 D.
【解答】解:﹣7的相反数为7,
故选:C.
二.科学记数法—表示较大的数(共3小题)
2.(2022•济南)神舟十三号飞船在近地点高度200000m,远地点高度356000m的轨道上驻留了6个月后,于2022年4月16日顺利返回.将数字356000用科学记数法表示为( )
A.3.56×105 B.0.356×106 C.3.56×106 D.35.6×104
【解答】解:356000=3.56×105,
故选:A.
3.(2021•济南)2021年5月15日,我国“天问一号”探测器在火星成功着陆.火星具有和地球相近的环境,与地球最近时候的距离约55000000km.将数字55000000用科学记数法表示为( )
A.0.55×108 B.5.5×107 C.5.5×106 D.55×106
【解答】解:将55000000用科学记数法表示为5.5×107.
故选:B.
4.(2020•济南)2020年6月23日,我国的北斗卫星导航系统(BDS)星座部署完成,其中一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为( )
A.0.215×108 B.2.15×107 C.2.15×106 D.21.5×106
【解答】解:将21500000用科学记数法表示为2.15×107,
故选:B.
三.算术平方根(共1小题)
5.(2021•济南)9的算术平方根是( )
A.3 B.﹣3 C.±3 D.
【解答】解:∵32=9,
∴9的算术平方根是3.
故选:A.
四.实数的性质(共1小题)
6.(2020•济南)﹣2的绝对值是( )
A.2 B.﹣2 C.±2 D.
【解答】解:﹣2的绝对值是2;
故选:A.
五.实数与数轴(共2小题)
7.(2022•济南)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是( )
A.ab>0 B.a+b>0 C.|a|<|b| D.a+1<b+1
【解答】解:A选项,∵a<0,b>0,
∴ab<0,故该选项不符合题意;
B选项,∵a<0,b>0,|a|>|b|,
∴a+b<0,故该选项不符合题意;
C选项,|a|>|b|,故该选项不符合题意;
D选项,∵a<b,
∴a+1<b+1,故该选项符合题意;
故选:D.
8.(2021•济南)实数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是( )
A.a+b>0 B.﹣a>b C.a﹣b<0 D.﹣b<a
【解答】解:∵b<0<a,且|b|>|a|
∴a+b<0,选项A错误;
﹣a>b,选项B正确;
a﹣b>0,选项C错误;
﹣b>a,选项D错误;
故选:B.
六.完全平方公式(共1小题)
9.(2020•济南)下列运算正确的是( )
A.(﹣2a3)2=4a6 B.a2•a3=a6
C.3a+a2=3a3 D.(a﹣b)2=a2﹣b2
【解答】解:∵(﹣2a3)2=4a6,故选项A正确;
∵a2•a3=a5,故选项B错误;
∵3a+a2不能合并,故选项C错误;
∵(a﹣b)2=a2﹣2ab+b2,故选项D错误;
故选:A.
七.分式的加减法(共1小题)
10.(2021•济南)计算的结果是( )
A.m+1 B.m﹣1 C.m﹣2 D.﹣m﹣2
【解答】解:原式====m﹣1.
故选:B.
八.分式的化简求值(共1小题)
11.(2022•济南)若m﹣n=2,则代数式•的值是( )
A.﹣2 B.2 C.﹣4 D.4
【解答】解:原式=
=2(m﹣n).
当m﹣n=2时.原式=2×2=4.
故选:D.
九.一次函数的图象(共1小题)
12.(2020•济南)若m<﹣2,则一次函数y=(m+1)x+1﹣m的图象可能是( )
A. B.
C. D.
【解答】解:∵m<﹣2,
∴m+1<0,1﹣m>0,
所以一次函数y=(m+1)x+1﹣m的图象经过一,二,四象限,
故选:D.
一十.反比例函数的性质(共1小题)
13.(2021•济南)反比例函数y=(k≠0)图象的两个分支分别位于第一、三象限,则一次函数y=kx﹣k的图象大致是( )
A. B. C. D.
【解答】解:∵反比例函数y=(k≠0)图象的两个分支分别位于第一、三象限,
∴k>0,
∴﹣k<0,
∴一次函数y=kx﹣k的图象图象经过第一、三、四象限,
故选:D.
一十一.二次函数的定义(共1小题)
14.(2022•济南)某学校要建一块矩形菜地供学生参加劳动实践,菜地的一边靠墙,另外三边用木栏围成,木栏总长为40m.如图所示,设矩形一边长为xm,另一边长为ym,当x在一定范围内变化时,y随x的变化而变化,则y与x满足的函数关系是( )
A.正比例函数关系 B.一次函数关系
C.反比例函数关系 D.二次函数关系
【解答】解:由题意得,y=40﹣2x,
所以y与x是一次函数关系,
故选:B.
一十二.二次函数图象与系数的关系(共2小题)
15.(2022•济南)抛物线y=﹣x2+2mx﹣m2+2与y轴交于点C,过点C作直线l垂直于y轴,将抛物线在y轴右侧的部分沿直线l翻折,其余部分保持不变,组成图形G,点M(m﹣1,y1),N(m+1,y2)为图形G上两点,若y1<y2,则m的取值范围是( )
A.m<﹣1或m>0 B.<m< C.0≤m< D.﹣1<m<1
【解答】解:在y=﹣x2+2mx﹣m2+2中,令x=m﹣1,得y=﹣(m﹣1)2+2m(m﹣1)﹣m2+2=1,
令x=m+1,得y=﹣(m+1)2+2m(m+1)﹣m2+2=1,
∴(m﹣1,1)和(m+1,1)是关于抛物线y=﹣x2+2mx﹣m2+2对称轴对称的两点,
①若m﹣1≥0,即(m﹣1,1)和(m+1,1)在y轴右侧(包括(m﹣1,1)在y轴上),
则点(m﹣1,1)经过翻折得M(m﹣1,y1),点(m+1,1)经过翻折的N(m+1,y2),
如图:
由对称性可知,y1=y2,
∴此时不满足y1<y2;
②当m+1≤0,即(m﹣1,1)和(m+1,1)在y轴左侧(包括(m+1,1)在y轴上),
则点(m﹣1,1)即为M(m﹣1,y1),点(m+1,1)即为N(m+1,y2),
∴y1=y2,
∴此时不满足y1<y2;
③当m﹣1<0<m+1,即(m﹣1,1)在y轴左侧,(m+1,1)在y轴右侧时,如图:
此时M(m﹣1,1),(m+1,1)翻折后得N,满足y1<y2;
由m﹣1<0<m+1得:﹣1<m<1,
故选:D.
16.(2020•济南)已知抛物线y=x2+(2m﹣6)x+m2﹣3与y轴交于点A,与直线x=4交于点B,当x>2时,y值随x值的增大而增大.记抛物线在线段AB下方的部分为G(包含A、B两点),M为G上任意一点,设M的纵坐标为t,若t≥﹣3,则m的取值范围是( )
A.m≥ B.≤m≤3 C.m≥3 D.1≤m≤3
【解答】解:当对称轴在y轴的右侧时,,
解得≤m<3,
当对称轴是y轴时,m=3,符合题意,
当对称轴在y轴的左侧时,2m﹣6>0,解得m>3,
综上所述,满足条件的m的值为m≥.
故选:A.
一十三.二次函数图象上点的坐标特征(共1小题)
17.(2021•济南)新定义:在平面直角坐标系中,对于点P(m,n)和点P′(m,n′),若满足m≥0时,n′=n﹣4;m<0时,n′=﹣n,则称点P′(m,n′)是点P(m,n)的限变点.例如:点P1(2,5)的限变点是P1′(2,1),点P2(﹣2,3)的限变点是P2′(﹣2,﹣3).若点P(m,n)在二次函数y=﹣x2+4x+2的图象上,则当﹣1≤m≤3时,其限变点P′的纵坐标n'的取值范围是( )
A.﹣2≤n′≤2 B.1≤n′≤3 C.1≤n′≤2 D.﹣2≤n′≤3
【解答】解:由题意可知,
当m≥0时,n′=﹣m2+4m+2﹣4=﹣(m﹣2)2+2,
∴当0≤m≤3时,﹣2≤n′≤2,
当m<0时,n′=m2﹣4m﹣2=(m﹣2)2﹣6,
∴当﹣1≤m<0时,﹣2<n′≤3,
综上,当﹣1≤m≤3时,其限变点P′的纵坐标n'的取值范围是﹣2≤n′≤3,
故选:D.
一十四.平行线的性质(共3小题)
18.(2022•济南)如图,AB∥CD,点E在AB上,EC平分∠AED,若∠1=65°,则∠2的度数为( )
A.45° B.50° C.57.5° D.65°
【解答】解:∵AB∥CD,
∴∠AEC=∠1=65°.
∵EC平分∠AED,
∴∠AED=2∠AEC=130°.
∴∠2=180°﹣∠AED=50°.
故选:B.
19.(2021•济南)如图,AB∥CD,∠A=30°,DA平分∠CDE,则∠DEB的度数为( )
A.45° B.60° C.75° D.80°
【解答】解:∵AB∥CD,∠A=30°,
∴∠ADC=∠A=30°,∠CDE=∠DEB,
∵DA平分∠CDE,
∴∠CDE=2∠ADC=60°,
∴∠DEB=60°.
故选:B.
20.(2020•济南)如图,AB∥CD,AD⊥AC,∠BAD=35°,则∠ACD=( )
A.35° B.45° C.55° D.70°
【解答】解:∵AB∥CD,
∴∠ADC=∠BAD=35°,
∵AD⊥AC,
∴∠ADC+∠ACD=90°,
∴∠ACD=90°﹣35°=55°,
故选:C.
一十五.作图—基本作图(共2小题)
21.(2022•济南)如图,矩形ABCD中,分别以A,C为圆心,以大于AC的长为半径作弧,两弧相交于M,N两点,作直线MN分别交AD,BC于点E,F,连接AF,若BF=3,AE=5,以下结论错误的是( )
A.AF=CF B.∠FAC=∠EAC C.AB=4 D.AC=2AB
【解答】解:∵四边形ABCD是矩形,
∴AD=BC,AD∥BC,
∴∠FCA=∠ECA,
根据作图过程可知:
MN是AC的垂直平分线,
∴AF=CF,故A选项正确,不符合题意;
∴∠FAC=∠FCA,
∴∠FAC=∠EAC,故B选项正确,不符合题意;
∵MN是AC的垂直平分线,
∴∠FOA=∠EOC=90°,AO=CO,
在△CFO和△AEO中,
,
∴△CFO≌△AEO(ASA),
∴AE=CF,
∴AF=CF=AE=5,
∵BF=3,
在Rt△ABE中,根据勾股定理,得
AB==4,故C选项正确,不符合题意;
∵BC=BF+FC=3+5=8,
∴BC=2AB,故D选项错误,符合题意,
故选:D.
22.(2020•济南)如图,在△ABC中,AB=AC,分别以点A、B为圆心,以适当的长为半径作弧,两弧分别交于E,F,作直线EF,D为BC的中点,M为直线EF上任意一点.若BC=4,△ABC面积为10,则BM+MD长度的最小值为( )
A. B.3 C.4 D.5
【解答】解:由作法得EF垂直平分AB,
∴MB=MA,
∴BM+MD=MA+MD,
连接MA、DA,如图,
∵MA+MD≥AD(当且仅当M点在AD上时取等号),
∴MA+MD的最小值为AD,
∵AB=AC,D点为BC的中点,
∴AD⊥BC,
∵S△ABC=•BC•AD=10,
∴AD==5,
∴BM+MD长度的最小值为5.
故选:D.
一十六.坐标与图形变化-对称(共1小题)
23.(2020•济南)如图,在平面直角坐标系中,△ABC的顶点都在格点上,如果将△ABC先沿y轴翻折,再向上平移3个单位长度,得到△A'B'C',那么点B的对应点B'的坐标为( )
A.(1,7) B.(0,5) C.(3,4) D.(﹣3,2)
【解答】解:由坐标系可得B(﹣3,1),将△ABC先沿y轴翻折得到B点对应点为(3,1),再向上平移3个单位长度,点B的对应点B'的坐标为(3,1+3),
即(3,4),
故选:C.
一十七.中心对称图形(共3小题)
24.(2022•济南)下列绿色能源图标中既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
【解答】解:A.不是轴对称图形,也不是中心对称图形,故A选项不合题意;
B.既是轴对称图形又是中心对称图形,故B选项符合题意;
C.不是轴对称图形,是中心对称图形,故C选项不合题意;
D.是轴对称图形,不是中心对称图形,故D选项不合题意;
故选:B.
25.(2021•济南)以下是我国部分博物馆标志的图案,其中既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
【解答】解:A.是轴对称图形,又是中心对称图形,符合题意;
B.是轴对称图形,不是中心对称图形,不符合题意;
C.不是轴对称图形,是中心对称图形,不符合题意;
D.不是轴对称图形,又不是中心对称图形,不符合题意.
故选:A.
26.(2020•济南)古钱币是我国悠久的历史文化遗产,以下是在《中国古代钱币》特种邮票中选取的部分图形,其中既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;
B、是轴对称图形,不是中心对称图形,故本选项不合题意;
C、不是轴对称图形,也不是中心对称图形,故本选项不合题意;
D、既是轴对称图形又是中心对称图形的,故本选项符合题意.
故选:D.
一十八.相似三角形的判定与性质(共1小题)
27.(2021•济南)如图,在△ABC中,∠ABC=90°,∠C=30°,以点A为圆心,以AB的长为半径作弧交AC于点D,连接BD,再分别以点B,D为圆心,大于BD的长为半径作弧,两弧交于点P,作射线AP交BC于点E,连接DE,则下列结论中不正确的是( )
A.BE=DE B.DE垂直平分线段AC
C. D.BD2=BC•BE
【解答】解:由题意可得∠ABC=90°,∠C=30°,AB=AD,AP为BD的垂直平分线,
∴BE=DE,
∴∠BAE=∠DAE=30°,
∴△AEC是等腰三角形,
∵AB=AD,AC=2AB,
∴点D为AC的中点,
∴DE垂直平分线段AC,
故选项A,B正确,不符合题意;
在△ABC和△EDC中,∠C=∠C,∠ABC=∠EDC=90°,
∴△ABC∽△EDC,
∴,
∵,DC=,
∴,
∴,
∴,故选项C错误,符合题意;
在△ABD中,∵AB=AD,∠BAD=60°,
∴△ABD是等边三角形,
∴∠ABD=∠ADB=60°,
∴∠DBE=∠BDE=30°,
在△BED和△BDC中,∠DBC=∠EBD=30°,∠BDE=∠C=30°,
∴△BED∽△BDC,
∴,
∴BD2=BC•BE,故选项D正确,不符合题意.
故选:C.
一十九.解直角三角形的应用(共1小题)
28.(2020•济南)如图,△ABC、△FED区域为驾驶员的盲区,驾驶员视线PB与地面BE的夹角∠PBE=43°,视线PE与地面BE的夹角∠PEB=20°,点A,F为视线与车窗底端的交点,AF∥BE,AC⊥BE,FD⊥BE.若A点到B点的距离AB=1.6m,则盲区中DE的长度是( )
(参考数据:sin43°≈0.7,tan43°≈0.9,sin20°≈0.3,tan20°≈0.4)
A.2.6m B.2.8m C.3.4m D.4.5m
【解答】解:∵FD⊥EB,AC⊥EB,
∴DF∥AC,
∵AF∥EB,
∴四边形ACDF是平行四边形,
∵∠ACD=90°,
∴四边形ACDF是矩形,
∴DF=AC,
在Rt△ACB中,∵∠ACB=90°,
∴AC=AB•sin43°≈1.6×0.7=1.12(m),
∴DF=AC=1.12(m),
在Rt△DEF中,∵∠FDE=90°,
∴tan∠E=,
∴DE≈=2.8(m),
故选:B.
二十.解直角三角形的应用-仰角俯角问题(共2小题)
29.(2022•济南)数学活动小组到某广场测量标志性建筑AB的高度.如图,他们在地面上C点测得最高点A的仰角为22°,再向前70m至D点,又测得最高点A的仰角为58°,点C,D,B在同一直线上,则该建筑物AB的高度约为( )
(精确到1m.参考数据:sin22°≈0.37,tan22°≈0.40,sin58°≈0.85,tan58°≈1.60)
A.28m B.34m C.37m D.46m
【解答】解:由题意可知:AB⊥BC,
在Rt△ADB中,∠B=90°,∠ADB=58°,
∵tan∠ADB=tan58°=,
∴BD=≈(m),
在Rt△ACB中,∠B=90°,∠C=22°,
∵CD=70m,
∴BC=CD+BD=(70+)m,
∴AB=BC×tanC≈(70+)×0.40(m),
解得:AB≈37m,
答:该建筑物AB的高度约为37m.
故选:C.
30.(2021•济南)无人机低空遥感技术已广泛应用于农作物监测.如图,某农业特色品牌示范基地用无人机对一块试验田进行监测作业时,在距地面高度为135m的A处测得试验田右侧边界N处俯角为43°,无人机垂直下降40m至B处,又测得试验田左侧边界M处俯角为35°,则M,N之间的距离为( )(参考数据:tan43°≈0.9,sin43°≈0.7,cos35°≈0.8,tan35°≈0.7,结果保留整数)
A.188m B.269m C.286m D.312m
【解答】解:由题意得:∠N=43°,∠M=35°,AO=135m,BO=AO﹣AB=95m,
在Rt△AON中,
tanN==tan43°,
∴NO=≈150m,
在Rt△BOM中,
tanM==tan35°,
∴MO=≈135.7m,
∴MN=MO+NO=135.7+150≈286m.
故选:C.
二十一.简单几何体的三视图(共1小题)
31.(2021•济南)下列几何体中,其俯视图与主视图完全相同的是( )
A. B.
C. D.
【解答】解:圆锥的主视图是等腰三角形,俯视图是圆,因此A不符合题意;
圆柱的主视图是矩形,俯视图是圆,因此B不符合题意;
正方体的主视图、俯视图都是正方形,因此选项C符合题意;
三棱柱的主视图是矩形,俯视图是三角形,因此D不符合题意;
故选:C.
二十二.简单组合体的三视图(共1小题)
32.(2020•济南)如图所示的几何体,其俯视图是( )
A. B. C. D.
【解答】解:从几何体上面看,共2层,底层2个小正方形,上层是3个小正方形,左齐.
故选:C.
二十三.由三视图判断几何体(共1小题)
33.(2022•济南)如图是某几何体的三视图,该几何体是( )
A.圆柱 B.球 C.圆锥 D.正四棱柱
【解答】解:该几何体的主视图、左视图都是长方形,而俯视图是圆形,因此这个几何体是圆柱,
故选:A.
二十四.折线统计图(共1小题)
34.(2020•济南)某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是( )
A.每月阅读课外书本数的众数是45
B.每月阅读课外书本数的中位数是58
C.从2到6月份阅读课外书的本数逐月下降
D.从1到7月份每月阅读课外书本数的最大值比最小值多45
【解答】解:因为58出现了两次,其他数据都出现了一次,所以每月阅读课外书本数的众数是58,故选项A错误;
每月阅读课外书本数从小到大的顺序为:28、33、45、58、58、72、78,最中间的数字为58,所以该组数据的中位数为58,故选项B正确;
从折线图可以看出,从2月到4月阅读课外书的本数下降,4月到5月阅读课外书的本数上升,故选项C错误;
从1到7月份每月阅读课外书本数的最大值78比最小值多28多50,故选项D错误.
故选:B.
二十五.列表法与树状图法(共2小题)
35.(2022•济南)某班级计划举办手抄报展览,确定了“5G时代”、“北斗卫星”、“高铁速度”三个主题,若小明和小亮每人随机选择其中一个主题,则他们恰好选择同一个主题的概率是( )
A. B. C. D.
【解答】解:把“5G时代”、“北斗卫星”、“高铁速度”三个主题分别记为A、B、C,
画树状图如下:
共有9种等可能的结果,其中小明和小亮恰好选择同一个主题的结果有3种,
∴小明和小亮恰好选择同一个主题的概率为=,
故选:C.
36.(2021•济南)某学校组织学生到社区开展公益宣传活动,成立了“垃圾分类”“文明出行”“低碳环保”三个宣传队,如果小华和小丽每人随机选择参加其中一个宣传队,则她们恰好选到同一个宣传队的概率是( )
A. B. C. D.
【解答】解:把“垃圾分类”“文明出行”“低碳环保”三个宣传队分别记为A、B、C,
画树状图如下:
共有9种等可能的结果,小华和小丽恰好选到同一个宣传队的结果有3种,
∴小华和小丽恰好选到同一个宣传队的概率为=,
故选:C.
相关试卷
这是一份山东省菏泽市三年(2020-2022)中考数学真题分类汇编-01选择题,共18页。
这是一份山东省日照市三年(2020-2022)中考数学真题分类汇编-选择题,共29页。
这是一份山东省济南市三年(2020-2022)中考数学真题分类汇编-解答题,共48页。试卷主要包含了﹣1,计算,解不等式组,,与y轴交于点B等内容,欢迎下载使用。