|试卷下载
搜索
    上传资料 赚现金
    02选择题(基础题&中档题)知识点分类-浙江省绍兴市五年(2018-2022)中考数学真题分层分类汇编
    立即下载
    加入资料篮
    02选择题(基础题&中档题)知识点分类-浙江省绍兴市五年(2018-2022)中考数学真题分层分类汇编01
    02选择题(基础题&中档题)知识点分类-浙江省绍兴市五年(2018-2022)中考数学真题分层分类汇编02
    02选择题(基础题&中档题)知识点分类-浙江省绍兴市五年(2018-2022)中考数学真题分层分类汇编03
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    02选择题(基础题&中档题)知识点分类-浙江省绍兴市五年(2018-2022)中考数学真题分层分类汇编

    展开
    这是一份02选择题(基础题&中档题)知识点分类-浙江省绍兴市五年(2018-2022)中考数学真题分层分类汇编,共29页。

    A.3.2×106B.3.2×105C.3.2×104D.32×104
    二.规律型:图形的变化类(共2小题)
    2.(2018•绍兴)利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20,如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生.表示6班学生的识别图案是( )
    A.B.
    C.D.
    3.(2018•绍兴)某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有34枚图钉可供选用,则最多可以展示绘画作品( )
    A.16张B.18张C.20张D.21张
    三.整式的除法(共1小题)
    4.(2022•绍兴)下列计算正确的是( )
    A.(a2+ab)÷a=a+bB.a2•a=a2
    C.(a+b)2=a2+b2D.(a3)2=a5
    四.二元一次方程组的应用(共1小题)
    5.(2020•绍兴)同型号的甲、乙两辆车加满气体燃料后均可行驶210km,它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地( )
    A.120kmB.140kmC.160kmD.180km
    五.函数的图象(共1小题)
    6.(2018•绍兴)如图,一个函数的图象由射线BA、线段BC、射线CD组成,其中点A(﹣1,2),B(1,3),C(2,1),D(6,5),则此函数( )
    A.当x<1时,y随x的增大而增大
    B.当x<1时,y随x的增大而减小
    C.当x>1时,y随x的增大而增大
    D.当x>1时,y随x的增大而减小
    六.一次函数图象上点的坐标特征(共1小题)
    7.(2022•绍兴)已知(x1,y1),(x2,y2),(x3,y3)为直线y=﹣2x+3上的三个点,且x1<x2<x3,则以下判断正确的是( )
    A.若x1x2>0,则y1y3>0B.若x1x3<0,则y1y2>0
    C.若x2x3>0,则y1y3>0D.若x2x3<0,则y1y2>0
    七.二次函数的性质(共1小题)
    8.(2022•绍兴)已知抛物线y=x2+mx的对称轴为直线x=2,则关于x的方程x2+mx=5的根是( )
    A.0,4B.1,5C.1,﹣5D.﹣1,5
    八.二次函数图象与几何变换(共1小题)
    9.(2019•绍兴)在平面直角坐标系中,抛物线y=(x+5)(x﹣3)经变换后得到抛物线y=(x+3)(x﹣5),则这个变换可以是( )
    A.向左平移2个单位B.向右平移2个单位
    C.向左平移8个单位D.向右平移8个单位
    九.抛物线与x轴的交点(共1小题)
    10.(2018•绍兴)若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )
    A.(﹣3,﹣6)B.(﹣3,0)C.(﹣3,﹣5)D.(﹣3,﹣1)
    一十.三角形三边关系(共1小题)
    11.(2020•绍兴)长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为( )
    A.4B.5C.6D.7
    一十一.直角三角形的性质(共1小题)
    12.(2022•绍兴)如图,把一块三角板ABC的直角顶点B放在直线EF上,∠C=30°,AC∥EF,则∠1=( )
    A.30°B.45°C.60°D.75°
    一十二.菱形的性质(共1小题)
    13.(2021•绍兴)如图,菱形ABCD中,∠B=60°,点P从点B出发,沿折线BC﹣CD方向移动,移动到点D停止.在△ABP形状的变化过程中,依次出现的特殊三角形是( )
    A.直角三角形→等边三角形→等腰三角形→直角三角形
    B.直角三角形→等腰三角形→直角三角形→等边三角形
    C.直角三角形→等边三角形→直角三角形→等腰三角形
    D.等腰三角形→等边三角形→直角三角形→等腰三角形
    一十三.菱形的判定与性质(共1小题)
    14.(2021•绍兴)数学兴趣小组同学从“中国结”的图案(图1)中发现,用相同的菱形纵向排列放置,可得到更多的菱形.如图2,用2个相同的菱形放置,得到3个菱形.下面说法正确的是( )
    A.用3个相同的菱形放置,最多能得到6个菱形
    B.用4个相同的菱形放置,最多能得到16个菱形
    C.用5个相同的菱形放置,最多能得到27个菱形
    D.用6个相同的菱形放置,最多能得到41个菱形
    一十四.正方形的性质(共1小题)
    15.(2019•绍兴)正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D.在点E从点A移动到点B的过程中,矩形ECFG的面积( )
    A.先变大后变小B.先变小后变大
    C.一直变大D.保持不变
    一十五.正方形的判定(共1小题)
    16.(2022•绍兴)如图,在平行四边形ABCD中,AD=2AB=2,∠ABC=60°,E,F是对角线BD上的动点,且BE=DF,M,N分别是边AD,边BC上的动点.下列四种说法:
    ①存在无数个平行四边形MENF;
    ②存在无数个矩形MENF;
    ③存在无数个菱形MENF;
    ④存在无数个正方形MENF.
    其中正确的个数是( )
    A.1B.2C.3D.4
    一十六.圆周角定理(共1小题)
    17.(2020•绍兴)如图,点A,B,C,D,E均在⊙O上,∠BAC=15°,∠CED=30°,则∠BOD的度数为( )
    A.45°B.60°C.75°D.90°
    一十七.三角形的外接圆与外心(共1小题)
    18.(2019•绍兴)如图,△ABC内接于⊙O,∠B=65°,∠C=70°.若BC=2,则的长为( )
    A.πB.πC.2πD.2π
    一十八.正多边形和圆(共1小题)
    19.(2021•绍兴)如图,正方形ABCD内接于⊙O,点P在上,则∠BPC的度数为( )
    A.30°B.45°C.60°D.90°
    一十九.旋转的性质(共1小题)
    20.(2020•绍兴)如图,等腰直角三角形ABC中,∠ABC=90°,BA=BC,将BC绕点B顺时针旋转θ(0°<θ<90°),得到BP,连接CP,过点A作AH⊥CP交CP的延长线于点H,连接AP,则∠PAH的度数( )
    A.随着θ的增大而增大
    B.随着θ的增大而减小
    C.不变
    D.随着θ的增大,先增大后减小
    二十.中心对称(共1小题)
    21.(2020•绍兴)如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为( )
    A.平行四边形→正方形→平行四边形→矩形
    B.平行四边形→菱形→平行四边形→矩形
    C.平行四边形→正方形→菱形→矩形
    D.平行四边形→菱形→正方形→矩形
    二十一.相似三角形的性质(共1小题)
    22.(2022•绍兴)将一张以AB为边的矩形纸片,先沿一条直线剪掉一个直角三角形,在剩下的纸片中,再沿一条直线剪掉一个直角三角形(剪掉的两个直角三角形相似),剩下的是如图所示的四边形纸片ABCD,其中∠A=90°,AB=9,BC=7,CD=6,AD=2,则剪掉的两个直角三角形的斜边长不可能是( )
    A.B.C.10D.
    二十二.相似三角形的应用(共3小题)
    23.(2021•绍兴)如图,树AB在路灯O的照射下形成投影AC,已知路灯高PO=5m,树影AC=3m,树AB与路灯O的水平距离AP=4.5m,则树的高度AB长是( )
    A.2mB.3mC.mD.m
    24.(2020•绍兴)如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2:5,且三角板的一边长为8cm.则投影三角板的对应边长为( )
    A.20cmB.10cmC.8cmD.3.2cm
    25.(2018•绍兴)学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为( )
    A.0.2mB.0.3mC.0.4mD.0.5m
    二十三.解直角三角形(共1小题)
    26.(2021•绍兴)如图,Rt△ABC中,∠BAC=90°,csB=,点D是边BC的中点,以AD为底边在其右侧作等腰三角形ADE,使∠ADE=∠B,连结CE,则的值为( )
    A.B.C.D.2
    二十四.概率公式(共3小题)
    27.(2022•绍兴)在一个不透明的袋子里,装有3个红球、1个白球,它们除颜色外都相同,从袋中任意摸出一个球为红球的概率是( )
    A.B.C.D.
    28.(2021•绍兴)在一个不透明的袋中装有6个只有颜色不同的球,其中3个红球、2个黄球和1个白球.从袋中任意摸出一个球,是白球的概率为( )
    A.B.C.D.
    29.(2020•绍兴)如图,小球从A入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从E出口落出的概率是( )
    A.B.C.D.
    参考答案与试题解析
    一.科学记数法—表示较大的数(共1小题)
    1.(2022•绍兴)2022年北京冬奥会3个赛区场馆使用绿色电力,减排320000吨二氧化碳.数字320000用科学记数法表示是( )
    A.3.2×106B.3.2×105C.3.2×104D.32×104
    【解答】解:320000=3.2×105,
    故选:B.
    二.规律型:图形的变化类(共2小题)
    2.(2018•绍兴)利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20,如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生.表示6班学生的识别图案是( )
    A.B.
    C.D.
    【解答】解:A、第一行数字从左到右依次为1、0、1、0,序号为1×23+0×22+1×21+0×20=10,不符合题意;
    B、第一行数字从左到右依次为0,1,1,0,序号为0×23+1×22+1×21+0×20=6,符合题意;
    C、第一行数字从左到右依次为1,0,0,1,序号为1×23+0×22+0×21+1×20=9,不符合题意;
    D、第一行数字从左到右依次为0,1,1,1,序号为0×23+1×22+1×21+1×20=7,不符合题意;
    故选:B.
    3.(2018•绍兴)某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有34枚图钉可供选用,则最多可以展示绘画作品( )
    A.16张B.18张C.20张D.21张
    【解答】解:(方法一)①如果所有的画展示成一行,34÷(1+1)﹣1=16(张),
    ∴34枚图钉最多可以展示16张画;
    ②如果所有的画展示成两行,34÷(2+1)=11(枚)……1(枚),
    11﹣1=10(张),2×10=20(张),
    ∴34枚图钉最多可以展示20张画;
    ③如果所有的画展示成三行,34÷(3+1)=8(枚)……2(枚),
    8﹣1=7(张),3×7=21(张),
    ∴34枚图钉最多可以展示21张画;
    ④如果所有的画展示成四行,34÷(4+1)=6(枚)……4(枚),
    6﹣1=5(张),4×5=20(张),
    ∴34枚图钉最多可以展示20张画;
    ⑤如果所有的画展示成五行,34÷(5+1)=5(枚)……4(枚),
    5﹣1=4(张),5×4=20(张),
    ∴34枚图钉最多可以展示20张画.
    综上所述:34枚图钉最多可以展示21张画.
    (方法二)设一行有n张,共有k行.
    ∵1张需要2枚图钉,2张需要3枚图钉,3张需要4枚图钉,…,
    ∴共需(n+1)(k+1)枚图钉,共可展示nk张画.
    依题意得:(n+1)(k+1)≤34.
    当k=1时,n≤16,此时nk≤16,即最多可以展示16张画;
    当k=2时,n≤,
    又∵n为正整数,
    ∴n的最大值为10,此时nk的最大值为20,即最多可以展示20张画;
    当k=3时,n≤,
    又∵n为正整数,
    ∴n的最大值为7,此时nk的最大值为21,即最多可以展示21张画;
    当k=4时,n≤,
    又∵n为正整数,
    ∴n的最大值为5,此时nk的最大值为20,即最多可以展示20张画;
    当k=5时,n≤,
    又∵n为正整数,
    ∴n的最大值为4,此时nk的最大值为20,即最多可以展示20张画;
    当k=6时,n≤,
    又∵n为正整数,
    ∴n的最大值为3,此时nk的最大值为18,即最多可以展示18张画;
    当k=7时,n≤,
    又∵n为正整数,
    ∴n的最大值为3,此时nk的最大值为21,即最多可以展示21张画;
    当k=8时,n≤,
    又∵n为正整数,
    ∴n的最大值为2,此时nk的最大值为16,即最多可以展示16张画;
    当k=9时,n≤,
    又∵n为正整数,
    ∴n的最大值为2,此时nk的最大值为18,即最多可以展示18张画;
    同理,当n=2时,nk的最大值为20;当n=1时,nk的最大值为16.
    ∴最多可以展示绘画作品21张.
    故选:D.
    三.整式的除法(共1小题)
    4.(2022•绍兴)下列计算正确的是( )
    A.(a2+ab)÷a=a+bB.a2•a=a2
    C.(a+b)2=a2+b2D.(a3)2=a5
    【解答】解:A选项,原式=a2÷a+ab÷a=a+b,故该选项符合题意;
    B选项,原式=a3,故该选项不符合题意;
    C选项,原式=a2+2ab+b2,故该选项不符合题意;
    D选项,原式=a6,故该选项不符合题意;
    故选:A.
    四.二元一次方程组的应用(共1小题)
    5.(2020•绍兴)同型号的甲、乙两辆车加满气体燃料后均可行驶210km,它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地( )
    A.120kmB.140kmC.160kmD.180km
    【解答】解:设甲行驶到C地时返回,到达A地燃料用完,乙行驶到B地再返回A地时燃料用完,如图:
    设AB=xkm,AC=ykm,根据题意得:

    解得:.
    ∴乙在C地时加注行驶70km的燃料,则AB的最大长度是140km.
    或者:设AC=ykm即可,从甲车的角度考虑问题,甲车给乙车注入燃料,要想最远,需满足以下两个条件:①注满乙车;②刚好够甲车从C回到A.从A到C,甲、乙两车都行驶了AC,即乙车行驶ykm,也即甲车注入燃料量可行驶ykm,注入后甲车剩余油量可行驶ykm(刚好返回A地),所以对于甲车,y+y+y=210,所以y=70.从乙车角度,从C出发是满燃料,所以AB为:105+70÷2=140(km).
    故选:B.
    五.函数的图象(共1小题)
    6.(2018•绍兴)如图,一个函数的图象由射线BA、线段BC、射线CD组成,其中点A(﹣1,2),B(1,3),C(2,1),D(6,5),则此函数( )
    A.当x<1时,y随x的增大而增大
    B.当x<1时,y随x的增大而减小
    C.当x>1时,y随x的增大而增大
    D.当x>1时,y随x的增大而减小
    【解答】解:由函数图象可得,
    当x<1时,y随x的增大而增大,故选项A正确,选项B错误,
    当1<x<2时,y随x的增大而减小,当x>2时,y随x的增大而增大,故选项C、D错误,
    故选:A.
    六.一次函数图象上点的坐标特征(共1小题)
    7.(2022•绍兴)已知(x1,y1),(x2,y2),(x3,y3)为直线y=﹣2x+3上的三个点,且x1<x2<x3,则以下判断正确的是( )
    A.若x1x2>0,则y1y3>0B.若x1x3<0,则y1y2>0
    C.若x2x3>0,则y1y3>0D.若x2x3<0,则y1y2>0
    【解答】解:∵直线y=﹣2x+3,
    ∴y随x的增大而减小,当y=0时,x=1.5,
    ∵(x1,y1),(x2,y2),(x3,y3)为直线y=﹣2x+3上的三个点,且x1<x2<x3,
    ∴若x1x2>0,则x1,x2同号,但不能确定y1y3的正负,故选项A不符合题意;
    若x1x3<0,则x1,x3异号,但不能确定y1y2的正负,故选项B不符合题意;
    若x2x3>0,则x2,x3同号,但不能确定y1y3的正负,故选项C不符合题意;
    若x2x3<0,则x2,x3异号,则x1,x2同时为负,故y1,y2同时为正,故y1y2>0,故选项D符合题意;
    故选:D.
    七.二次函数的性质(共1小题)
    8.(2022•绍兴)已知抛物线y=x2+mx的对称轴为直线x=2,则关于x的方程x2+mx=5的根是( )
    A.0,4B.1,5C.1,﹣5D.﹣1,5
    【解答】解:∵抛物线y=x2+mx的对称轴为直线x=2,
    ∴﹣=2,
    解得m=﹣4,
    ∴方程x2+mx=5可以写成x2﹣4x=5,
    ∴x2﹣4x﹣5=0,
    ∴(x﹣5)(x+1)=0,
    解得x1=5,x2=﹣1,
    故选:D.
    八.二次函数图象与几何变换(共1小题)
    9.(2019•绍兴)在平面直角坐标系中,抛物线y=(x+5)(x﹣3)经变换后得到抛物线y=(x+3)(x﹣5),则这个变换可以是( )
    A.向左平移2个单位B.向右平移2个单位
    C.向左平移8个单位D.向右平移8个单位
    【解答】解:y=(x+5)(x﹣3)=(x+1)2﹣16,顶点坐标是(﹣1,﹣16).
    y=(x+3)(x﹣5)=(x﹣1)2﹣16,顶点坐标是(1,﹣16).
    所以将抛物线y=(x+5)(x﹣3)向右平移2个单位长度得到抛物线y=(x+3)(x﹣5),
    故选:B.
    九.抛物线与x轴的交点(共1小题)
    10.(2018•绍兴)若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )
    A.(﹣3,﹣6)B.(﹣3,0)C.(﹣3,﹣5)D.(﹣3,﹣1)
    【解答】解:∵某定弦抛物线的对称轴为直线x=1,
    ∴该定弦抛物线过点(0,0)、(2,0),
    ∴该抛物线解析式为y=x(x﹣2)=x2﹣2x=(x﹣1)2﹣1.
    将此抛物线向左平移2个单位,再向下平移3个单位,得到新抛物线的解析式为y=(x﹣1+2)2﹣1﹣3=(x+1)2﹣4.
    当x=﹣3时,y=(x+1)2﹣4=0,
    ∴得到的新抛物线过点(﹣3,0).
    故选:B.
    一十.三角形三边关系(共1小题)
    11.(2020•绍兴)长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为( )
    A.4B.5C.6D.7
    【解答】解:①长度分别为5、3、4,能构成三角形,且最长边为5;
    ②长度分别为2、6、4,不能构成三角形;
    ③长度分别为2、7、3,不能构成三角形;
    ④长度分别为6、3、3,不能构成三角形;
    综上所述,得到三角形的最长边长为5.
    故选:B.
    一十一.直角三角形的性质(共1小题)
    12.(2022•绍兴)如图,把一块三角板ABC的直角顶点B放在直线EF上,∠C=30°,AC∥EF,则∠1=( )
    A.30°B.45°C.60°D.75°
    【解答】解:∵AC∥EF,∠C=30°,
    ∴∠C=∠CBF=30°,
    ∵∠ABC=90°,
    ∴∠1=180°﹣∠ABC﹣∠CBF=180°﹣90°﹣30°=60°,
    故选:C.
    一十二.菱形的性质(共1小题)
    13.(2021•绍兴)如图,菱形ABCD中,∠B=60°,点P从点B出发,沿折线BC﹣CD方向移动,移动到点D停止.在△ABP形状的变化过程中,依次出现的特殊三角形是( )
    A.直角三角形→等边三角形→等腰三角形→直角三角形
    B.直角三角形→等腰三角形→直角三角形→等边三角形
    C.直角三角形→等边三角形→直角三角形→等腰三角形
    D.等腰三角形→等边三角形→直角三角形→等腰三角形
    【解答】解:∵∠B=60°,故菱形由两个等边三角形组合而成,
    当AP⊥BC时,此时△ABP为直角三角形;
    当点P到达点C处时,此时△ABP为等边三角形;
    当P为CD中点时,△ABP为直角三角形;
    当点P与点D重合时,此时△ABP为等腰三角形,
    故选:C.
    一十三.菱形的判定与性质(共1小题)
    14.(2021•绍兴)数学兴趣小组同学从“中国结”的图案(图1)中发现,用相同的菱形纵向排列放置,可得到更多的菱形.如图2,用2个相同的菱形放置,得到3个菱形.下面说法正确的是( )
    A.用3个相同的菱形放置,最多能得到6个菱形
    B.用4个相同的菱形放置,最多能得到16个菱形
    C.用5个相同的菱形放置,最多能得到27个菱形
    D.用6个相同的菱形放置,最多能得到41个菱形
    【解答】解:如图所示,
    用2个相同的菱形放置,最多能得到3个菱形;
    用3个相同的菱形放置,最多能得到8个菱形,
    用4个相同的菱形放置,最多能得到16个菱形,
    用5个相同的菱形放置,最多能得到29个菱形,
    用6个相同的菱形放置,最多能得到47个菱形.
    故选:B.
    一十四.正方形的性质(共1小题)
    15.(2019•绍兴)正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D.在点E从点A移动到点B的过程中,矩形ECFG的面积( )
    A.先变大后变小B.先变小后变大
    C.一直变大D.保持不变
    【解答】解:连接DE,
    ∵,

    ∴矩形ECFG与正方形ABCD的面积相等.
    故选:D.
    一十五.正方形的判定(共1小题)
    16.(2022•绍兴)如图,在平行四边形ABCD中,AD=2AB=2,∠ABC=60°,E,F是对角线BD上的动点,且BE=DF,M,N分别是边AD,边BC上的动点.下列四种说法:
    ①存在无数个平行四边形MENF;
    ②存在无数个矩形MENF;
    ③存在无数个菱形MENF;
    ④存在无数个正方形MENF.
    其中正确的个数是( )
    A.1B.2C.3D.4
    【解答】解:连接AC,MN,且令AC,MN,BD相交于点O,
    ∵四边形ABCD是平行四边形,
    ∴OA=OC,OB=OD,
    ∵BE=DF,
    ∴OE=OF,
    只要OM=ON,那么四边形MENF就是平行四边形,
    ∵点E,F是BD上的动点,
    ∴存在无数个平行四边形MENF,故①正确;
    只要MN=EF,OM=ON,则四边形MENF是矩形,
    ∵点E,F是BD上的动点,
    ∴存在无数个矩形MENF,故②正确;
    只要MN⊥EF,OM=ON,则四边形MENF是菱形,
    ∵点E,F是BD上的动点,
    ∴存在无数个菱形MENF,故③正确;
    只要MN=EF,MN⊥EF,OM=ON,则四边形MENF是正方形,
    而符合要求的正方形只有一个,故④错误;
    故选:C.
    一十六.圆周角定理(共1小题)
    17.(2020•绍兴)如图,点A,B,C,D,E均在⊙O上,∠BAC=15°,∠CED=30°,则∠BOD的度数为( )
    A.45°B.60°C.75°D.90°
    【解答】解:连接BE,
    ∵∠BEC=∠BAC=15°,∠CED=30°,
    ∴∠BED=∠BEC+∠CED=45°,
    ∴∠BOD=2∠BED=90°.
    故选:D.
    一十七.三角形的外接圆与外心(共1小题)
    18.(2019•绍兴)如图,△ABC内接于⊙O,∠B=65°,∠C=70°.若BC=2,则的长为( )
    A.πB.πC.2πD.2π
    【解答】解:连接OB,OC.
    ∵∠A=180°﹣∠ABC﹣∠ACB=180°﹣65°﹣70°=45°,
    ∴∠BOC=90°,
    ∵BC=2,
    ∴OB=OC=2,
    ∴的长为=π,
    故选:A.
    一十八.正多边形和圆(共1小题)
    19.(2021•绍兴)如图,正方形ABCD内接于⊙O,点P在上,则∠BPC的度数为( )
    A.30°B.45°C.60°D.90°
    【解答】解:连接OB、OC,如图,
    ∵正方形ABCD内接于⊙O,
    ∴所对的圆心角为90°,
    ∴∠BOC=90°,
    ∴∠BPC=∠BOC=45°.
    故选:B.
    一十九.旋转的性质(共1小题)
    20.(2020•绍兴)如图,等腰直角三角形ABC中,∠ABC=90°,BA=BC,将BC绕点B顺时针旋转θ(0°<θ<90°),得到BP,连接CP,过点A作AH⊥CP交CP的延长线于点H,连接AP,则∠PAH的度数( )
    A.随着θ的增大而增大
    B.随着θ的增大而减小
    C.不变
    D.随着θ的增大,先增大后减小
    【解答】解:∵将BC绕点B顺时针旋转θ(0°<θ<90°),得到BP,
    ∴BC=BP=BA,
    ∴∠BCP=∠BPC,∠BPA=∠BAP,
    ∵∠CBP+∠BCP+∠BPC=180°,∠ABP+∠BAP+∠BPA=180°,∠ABP+∠CBP=90°,
    ∴∠BPC+∠BPA=135°=∠CPA,
    ∵∠CPA=∠AHC+∠PAH=135°,
    ∴∠PAH=135°﹣90°=45°,
    ∴∠PAH的度数是定值,
    故选:C.
    二十.中心对称(共1小题)
    21.(2020•绍兴)如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为( )
    A.平行四边形→正方形→平行四边形→矩形
    B.平行四边形→菱形→平行四边形→矩形
    C.平行四边形→正方形→菱形→矩形
    D.平行四边形→菱形→正方形→矩形
    【解答】解:观察图形可知,四边形AECF形状的变化依次为平行四边形→菱形→平行四边形→矩形.
    故选:B.
    二十一.相似三角形的性质(共1小题)
    22.(2022•绍兴)将一张以AB为边的矩形纸片,先沿一条直线剪掉一个直角三角形,在剩下的纸片中,再沿一条直线剪掉一个直角三角形(剪掉的两个直角三角形相似),剩下的是如图所示的四边形纸片ABCD,其中∠A=90°,AB=9,BC=7,CD=6,AD=2,则剪掉的两个直角三角形的斜边长不可能是( )
    A.B.C.10D.
    【解答】解:如右图1所示,
    由已知可得,△DFE∽△ECB,
    则,
    设DF=x,CE=y,
    则,
    解得,
    ∴DE=CD+CE=6+=,故选项B不符合题意;
    EB=DF+AD=+2=,故选项D不符合题意;
    如图2所示,
    由已知可得,△DCF∽△FEB,
    则,
    设FC=m,FD=n,
    则,
    解得,
    ∴FD=10,故选项C不符合题意;
    BF=FC+BC=8+6=14,
    故选:A.
    二十二.相似三角形的应用(共3小题)
    23.(2021•绍兴)如图,树AB在路灯O的照射下形成投影AC,已知路灯高PO=5m,树影AC=3m,树AB与路灯O的水平距离AP=4.5m,则树的高度AB长是( )
    A.2mB.3mC.mD.m
    【解答】解:∵AB∥OP,
    ∴△CAB∽△CPO,
    ∴,
    ∴,
    ∴AB=2(m),
    故选:A.
    24.(2020•绍兴)如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2:5,且三角板的一边长为8cm.则投影三角板的对应边长为( )
    A.20cmB.10cmC.8cmD.3.2cm
    【解答】解:设投影三角尺的对应边长为xcm,
    ∵三角尺与投影三角尺相似,
    ∴8:x=2:5,
    解得x=20.
    故选:A.
    25.(2018•绍兴)学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为( )
    A.0.2mB.0.3mC.0.4mD.0.5m
    【解答】解:∵AB⊥BD,CD⊥BD,
    ∴∠ABO=∠CDO=90°,
    又∵∠AOB=∠COD,
    ∴△ABO∽△CDO,
    则=,
    ∵AO=4m,AB=1.6m,CO=1m,
    ∴=,
    解得:CD=0.4m,
    故选:C.
    二十三.解直角三角形(共1小题)
    26.(2021•绍兴)如图,Rt△ABC中,∠BAC=90°,csB=,点D是边BC的中点,以AD为底边在其右侧作等腰三角形ADE,使∠ADE=∠B,连结CE,则的值为( )
    A.B.C.D.2
    【解答】解:设DE交AC于T,过点E作EH⊥CD于H.
    ∵∠BAC=90°,BD=DC,
    ∴AD=DB=DC,
    ∴∠B=∠DAB,
    ∵∠B=∠ADE,
    ∴∠DAB=∠ADE,
    ∴AB∥DE,
    ∴∠DTC=∠BAC=90°,
    ∵DT∥AB,BD=DC,
    ∴AT=TC,
    ∴EA=EC=ED,
    ∴∠EDC=∠ECD,
    ∵EH⊥CD,
    ∴CH=DH,
    ∵DE∥AB,
    ∴∠EDC=∠B,
    ∴∠ECD=∠B,
    ∴cs∠ECH=csB=,
    ∴=,
    ∴==2,
    故选:D.
    二十四.概率公式(共3小题)
    27.(2022•绍兴)在一个不透明的袋子里,装有3个红球、1个白球,它们除颜色外都相同,从袋中任意摸出一个球为红球的概率是( )
    A.B.C.D.
    【解答】解:∵总共有4个球,其中红球有3个,摸到每个球的可能性都相等,
    ∴摸到红球的概率P=,
    故选:A.
    28.(2021•绍兴)在一个不透明的袋中装有6个只有颜色不同的球,其中3个红球、2个黄球和1个白球.从袋中任意摸出一个球,是白球的概率为( )
    A.B.C.D.
    【解答】解:∵袋子中共有6个小球,其中白球有1个,
    ∴摸出一个球是白球的概率是,
    故选:A.
    29.(2020•绍兴)如图,小球从A入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从E出口落出的概率是( )
    A.B.C.D.
    【解答】解:由图可知,在每个交叉口都有向左或向右两种可能,且可能性相等,
    小球最终落出的点共有E、F、G、H四个,
    所以小球从E出口落出的概率是:;
    故选:C.
    相关试卷

    江苏省2022中考数学真题分类汇编-02选择题基础题、中档题知识点分类: 这是一份江苏省2022中考数学真题分类汇编-02选择题基础题、中档题知识点分类,共29页。

    02选择题(基础题、中档题)知识点分类-浙江省杭州市四年(2019-2022)中考数学真题分层分类汇编: 这是一份02选择题(基础题、中档题)知识点分类-浙江省杭州市四年(2019-2022)中考数学真题分层分类汇编,共21页。

    02选择题基础题&中档题知识点分类-天津市五年(2018-2022)中考数学真题分类汇编: 这是一份02选择题基础题&中档题知识点分类-天津市五年(2018-2022)中考数学真题分类汇编,共20页。试卷主要包含了,有下列结论等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map