2021中考数学真题知识点分类汇编(含答案)-四边形填空题1
展开2021中考数学真题知识点分类汇编-四边形填空题1
一.多边形内角与外角(共7小题)
1.(2021•济南)如图,正方形AMNP的边AM在正五边形ABCDE的边AB上,则∠PAE= .
2.(2021•镇江)如图,花瓣图案中的正六边形ABCDEF的每个内角的度数是 .
3.(2021•德阳)如图,在圆内接五边形ABCDE中,∠EAB+∠C+∠CDE+∠E=430°,则∠CDA= 度.
4.(2021•郴州)一个多边形的每一个外角都等于60°,则这个多边形的内角和为 度.
5.(2021•雅安)如图,ABCDEF为正六边形,ABGH为正方形,则图中∠BCG的度数为 .
6.(2021•盐城)若一个多边形的每个外角均为40°,则这个多边形的边数为 .
7.(2021•衢州)如图,在正五边形ABCDE中,连结AC,BD交于点F,则∠AFB的度数为 .
二.平行四边形的性质(共4小题)
8.(2021•湘潭)如图,在▱ABCD中,对角线AC,BD相交于点O,点E是边AB的中点.已知BC=10,则OE= .
9.(2021•哈尔滨)四边形ABCD是平行四边形,AB=6,∠BAD的平分线交直线BC于点E,若CE=2,则▱ABCD的周长为 .
10.(2021•常州)如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,其中点A在x轴正半轴上.若BC=3,则点A的坐标是 .
11.(2021•广东)如图,在▱ABCD中,AD=5,AB=12,sinA=.过点D作DE⊥AB,垂足为E,则sin∠BCE= .
三.平行四边形的判定(共1小题)
12.(2021•牡丹江)如图,在四边形ABCD中,AB=DC,请添加一个条件,使四边形ABCD成为平行四边形,你所添加的条件为 .
四.菱形的性质(共5小题)
13.(2021•绵阳)如图,在菱形ABCD中,∠A=60°,G为AD中点,点E在BC延长线上,F、H分别为CE、GE中点,∠EHF=∠DGE,CF=,则AB= .
14.(2021•黔东南州)如图,BD是菱形ABCD的一条对角线,点E在BC的延长线上,若∠ADB=32°,则∠DCE的度数为 度.
15.(2021•黑龙江)菱形ABCD中,AB=6,∠ABC=60°,以AD为边作等腰直角三角形ADF,∠DAF=90°,连接BF,BD,则△BDF的面积为 .
16.(2021•贵阳)如图,在平面直角坐标系中,菱形ABCD对角线的交点坐标是O(0,0),点B的坐标是(0,1),且BC=,则点A的坐标是 .
17.(2021•山西)如图,在菱形ABCD中,对角线AC,BD相交于点O,BD=8,AC=6,OE∥AB,交BC于点E,则OE的长为 .
五.菱形的判定(共1小题)
18.(2021•益阳)如图,已知四边形ABCD是平行四边形,从①AB=AD,②AC=BD,③∠ABC=∠ADC中选择一个作为条件,补充后使四边形ABCD成为菱形,则其选择是 (限填序号).
六.菱形的判定与性质(共1小题)
19.(2021•淄博)两张宽为3cm的纸条交叉重叠成四边形ABCD,如图所示.若∠α=30°,则对角线BD上的动点P到A,B,C三点距离之和的最小值是 .
七.矩形的性质(共13小题)
20.(2021•内江)如图,矩形ABCD,AB=1,BC=2,点A在x轴正半轴上,点D在y轴正半轴上.当点A在x轴上运动时,点D也随之在y轴上运动,在这个运动过程中,点C到原点O的最大距离为 .
21.(2021•西宁)如图,在矩形ABCD中,E为AD的中点,连接CE,过点E作CE的垂线交AB于点F,交CD的延长线于点G,连接CF.已知AF=,CF=5,则EF= .
22.(2021•锦州)如图,在矩形ABCD中,AB=6,BC=10,以点B为圆心、BC的长为半径画弧交AD于点E,再分别以点C,E为圆心、大于CE的长为半径画弧,两弧交于点F,作射线BF交CD于点G,则CG的长为 .
23.(2021•鞍山)如图,矩形ABCD中,AB=3,对角线AC,BD交于点O,DH⊥AC,垂足为点H,若∠ADH=2∠CDH,则AD的长为 .
24.(2021•阜新)如图,折叠矩形纸片ABCD,使点B的对应点E落在CD边上,GH为折痕,已知AB=6,BC=10.当折痕GH最长时,线段BH的长为 .
25.(2021•丹东)如图,在矩形ABCD中,连接BD,过点C作∠DBC平分线BE的垂线,垂足为点E,且交BD于点F;过点C作∠BDC平分线DH的垂线,垂足为点H,且交BD于点G,连接HE,若BC=2,CD=,则线段HE的长度为 .
26.(2021•哈尔滨)如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥BC,垂足为点E,过点A作AF⊥OB,垂足为点F.若BC=2AF,OD=6,则BE的长为 .
27.(2021•徐州)如图,四边形ABCD与AEGF均为矩形,点E、F分别在线段AB、AD上.若BE=FD=2cm,矩形AEGF的周长为20cm,则图中阴影部分的面积为 cm2.
28.(2021•贵港)如图,在矩形ABCD中,BD是对角线,AE⊥BD,垂足为E,连接CE,若tan∠ADB=,则tan∠DEC的值是 .
29.(2021•宜宾)如图,在矩形ABCD中,AD=AB,对角线相交于点O,动点M从点B向点A运动(到点A即停止),点N是AD上一动点,且满足∠MON=90°,连结MN.在点M、N运动过程中,则以下结论正确的是 .(写出所有正确结论的序号)
①点M、N的运动速度不相等;
②存在某一时刻使S△AMN=S△MON;
③S△AMN逐渐减小;
④MN2=BM2+DN2.
30.(2021•贺州)如图,在矩形ABCD中,E,F分别为BC,DA的中点,以CD为斜边作Rt△GCD,GD=GC,连接GE,GF.若BC=2GC,则∠EGF= .
31.(2021•福建)如图,在矩形ABCD中,AB=4,AD=5,点E,F分别是边AB,BC上的动点,点E不与A,B重合,且EF=AB,G是五边形AEFCD内满足GE=GF且∠EGF=90°的点.现给出以下结论:
①∠GEB与∠GFB一定互补;
②点G到边AB,BC的距离一定相等;
③点G到边AD,DC的距离可能相等;
④点G到边AB的距离的最大值为2.
其中正确的是 .(写出所有正确结论的序号)
32.(2021•北京)如图,在矩形ABCD中,点E,F分别在BC,AD上,AF=EC.只需添加一个条件即可证明四边形AECF是菱形,这个条件可以是 (写出一个即可).
八.矩形的判定(共2小题)
33.(2021•黑龙江)如图,在△ABC中,D,E,F分别是AB,BC和AC边的中点,请添加一个条件 ,使四边形BEFD为矩形.(填一个即可)
34.(2021•黑龙江)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,在不添加任何辅助线的情况下,请你添加一个条件 ,使平行四边形ABCD是矩形.
九.正方形的性质(共11小题)
35.(2021•威海)如图,在正方形ABCD中,AB=2,E为边AB上一点,F为边BC上一点.连接DE和AF交于点G,连接BG.若AE=BF,则BG的最小值为 .
36.(2021•赤峰)如图,正方形ABCD的边长为2,点E是BC的中点,连接AE与对角线BD交于点G,连接CG并延长,交AB于点F,连接DE交CF于点H,连接AH.以下结论:①CF⊥DE;②=;③GH=;④AD=AH,其中正确结论的序号是 .
37.(2021•黄石)如图,在正方形ABCD中,点E、F分别在边BC、CD上,且∠EAF=45°,AE交BD于M点,AF交BD于N点.
(1)若正方形的边长为2,则△CEF的周长是 .
(2)下列结论:①BM2+DN2=MN2;②若F是CD的中点,则tan∠AEF=2;③连接MF,则△AMF为等腰直角三角形.其中正确结论的序号是 (把你认为所有正确的都填上).
38.(2021•包头)如图,BD是正方形ABCD的一条对角线,E是BD上一点,F是CB延长线上一点,连接CE,EF,AF.若DE=DC,EF=EC,则∠BAF的度数为 .
39.(2021•铜仁市)如图,E、F分别是正方形ABCD的边AB、BC上的动点,满足AE=BF,连接CE、DF,相交于点G,连接AG,若正方形的边长为2.则线段AG的最小值为 .
40.(2021•张家界)如图,在正方形ABCD外取一点E,连接DE,AE,CE,过点D作DE的垂线交AE于点P,若DE=DP=1,PC=.下列结论:①△APD≌△CED;②AE⊥CE;③点C到直线DE的距离为;④S正方形ABCD=5+2,其中正确结论的序号为 .
41.(2021•襄阳)如图,正方形ABCD的对角线相交于点O,点E在边BC上,点F在CB的延长线上,∠EAF=45°,AE交BD于点G,tan∠BAE=,BF=2,则FG= .
42.(2021•铜仁市)如图,将边长为1的正方形ABCD绕点A顺时针旋转30°到AB1C1D1的位置,则阴影部分的面积是 .
43.(2021•贺州)如图,在边长为6的正方形ABCD中,点E,F分别在BC,CD上,BC=3BE且BE=CF,AE⊥BF,垂足为G,O是对角线BD的中点,连接OG,则OG的长为 .
44.(2021•绥化)在边长为4的正方形ABCD中,连接对角线AC、BD,点P是正方形边上或对角线上的一点,若PB=3PC,则PC= .
45.(2021•广元)如图,在正方形ABCD中,点O是对角线BD的中点,点P在线段OD上,连接AP并延长交CD于点E,过点P作PF⊥AP交BC于点F,连接AF、EF,AF交BD于G,现有以下结论:①AP=PF;②DE+BF=EF;③PB﹣PD=BF;④S△AEF为定值;⑤S四边形PEFG=S△APG.以上结论正确的有 (填入正确的序号即可).
一十.正方形的判定(共1小题)
46.(2021•黑龙江)如图,在矩形ABCD中,对角线AC、BD相交于点O,在不添加任何辅助线的情况下,请你添加一个条件 ,使矩形ABCD是正方形.
一十一.四边形综合题(共4小题)
47.(2021•攀枝花)如图,在正方形ABCD中,点M、N分别为边CD、BC上的点,且DM=CN,AM与DN交于点P,连接AN,点Q为AN的中点,连接PQ,BQ,若AB=8,DM=2,给出以下结论:①AM⊥DN;②∠MAN=∠BAN;③△PQN≌△BQN;④PQ=5.其中正确的结论有 (填上所有正确结论的序号)
48.(2021•鞍山)如图,在正方形ABCD中,对角线AC,BD相交于点O,F是线段OD上的动点(点F不与点O,D重合),连接CF,过点F作FG⊥CF分别交AC,AB于点H,G,连接CG交BD于点M,作OE∥CD交CG于点E,EF交AC于点N.有下列结论:①当BG=BM时,AG=BG;②=;③当GM=HF时,CF2=CN•BC;④CN2=BM2+DF2.其中正确的是 (填序号即可).
49.(2021•雅安)如图,在矩形ABCD中,AC,BD相交于点O,过点B作BF⊥AC于点M,交CD于点F,过点D作DE∥BF交AC于点N.交AB于点E,连接FN,EM.有下列结论:①四边形NEMF为平行四边形;②DN2=MC•NC;③△DNF为等边三角形;④当AO=AD时,四边形DEBF是菱形.其中,正确结论的序号 .
50.(2021•枣庄)如图,∠BOD=45°,BO=DO,点A在OB上,四边形ABCD是矩形,连接AC,BD交于点E,连接OE交AD于点F.下列4个判断:①OE⊥BD;②∠ADB=30°;③DF=AF;④若点G是线段OF的中点,则△AEG为等腰直角三角形,其中,判断正确的是 .(填序号)
参考答案与试题解析
一.多边形内角与外角(共7小题)
1.(2021•济南)如图,正方形AMNP的边AM在正五边形ABCDE的边AB上,则∠PAE= 18° .
【解答】解:∵五边形ABCDE为正五边形,
∴∠EAB==108°,
∵四边形AMNP为正方形,
∴∠PAM=90°,
∴∠PAE=∠EAB﹣∠PAM=108°﹣90°=18°.
故答案为:18°.
2.(2021•镇江)如图,花瓣图案中的正六边形ABCDEF的每个内角的度数是 120° .
【解答】解:设这个正六边形的每一个内角的度数为x,
则6x=(6﹣2)×180°,
解得x=120°.
故答案为:120°.
3.(2021•德阳)如图,在圆内接五边形ABCDE中,∠EAB+∠C+∠CDE+∠E=430°,则∠CDA= 70 度.
【解答】解:∵五边形ABCDE的内角和为(5﹣2)×180°=540°,
∴∠EAB+∠B+∠C+∠CDE+∠E=540°,
∵∠EAB+∠C+∠CDE+∠E=430°,
∴∠B=540°﹣430°=110°,
∵四边形ABCD为⊙O的内接四边形,
∴∠B+∠CDA=180°,
∴∠CDA=180°﹣110°=70°.
故答案为70.
4.(2021•郴州)一个多边形的每一个外角都等于60°,则这个多边形的内角和为 720 度.
【解答】解:∵多边形的每一个外角都等于60°,
∴它的边数为:360°÷60°=6,
∴它的内角和:180°×(6﹣2)=720°,
故答案为:720.
5.(2021•雅安)如图,ABCDEF为正六边形,ABGH为正方形,则图中∠BCG的度数为 15° .
【解答】解:∵ABCDEF为正六边形,ABGH为正方形,
∴AB=BC=BG,
∴∠BCG=∠BGC,
∵正六边形ABCDEF的每一个内角是4×180°÷6=120°,
正方形ABGH的每个内角是90°,
∴∠CBG=360°﹣120°﹣90°=150°,
∴∠BCG+∠BGC=180°﹣150°=30°,
∴∠BCG=15°.
故答案为:15°.
6.(2021•盐城)若一个多边形的每个外角均为40°,则这个多边形的边数为 9 .
【解答】解:360°÷40°=9,
故答案为:9.
7.(2021•衢州)如图,在正五边形ABCDE中,连结AC,BD交于点F,则∠AFB的度数为 72° .
【解答】解:∵五边形ABCDE是正五边形,
∴∠BCD=∠ABC==108°,
∵BA=BC,
∴∠BAC=∠BCA=36°,
同理∠CBD=36°,
∴∠AFB=∠BCA+∠CBD=72°,
故答案为:72°.
二.平行四边形的性质(共4小题)
8.(2021•湘潭)如图,在▱ABCD中,对角线AC,BD相交于点O,点E是边AB的中点.已知BC=10,则OE= 5 .
【解答】解:在▱ABCD中,对角线AC,BD相交于点O,
∴点O是AC的中点,
∵点E是边AB的中点,
∴OE是△ABC的中位线,
∴OE=BC=5.
故答案为:5.
9.(2021•哈尔滨)四边形ABCD是平行四边形,AB=6,∠BAD的平分线交直线BC于点E,若CE=2,则▱ABCD的周长为 20或28 .
【解答】解:当E点在线段BC上时,如图:
∵四边形ABCD为平行四边形,
∴BC∥AD,
∴∠BEA=∠EAD,
∵AE平分∠BAD,
∴∠BAE=∠EAD,
∴∠BEA=∠BAE,
∴BE=AB,
∵AB=6,
∴BE=6,
∵CE=2,
∴BC=BE+CE=6+2=8,
∴平行四边形ABCD的周长为:2×(6+8)=28,
当E点在线段BC延长线上时,如图:
∵四边形ABCD为平行四边形,
∴BC∥AD,
∴∠BEA=∠EAD,
∵AE平分∠BAD,
∴∠BAE=∠EAD,
∴∠BEA=∠BAE,
∴BE=AB,
∵AB=6,
∴BE=6,
∵CE=2,
∴BC=BE﹣CE=6﹣2=4,
∴平行四边形ABCD的周长为:2×(6+4)=20,
综上,平行四边形ABCD的周长为20或28.
故答案为20或28.
10.(2021•常州)如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,其中点A在x轴正半轴上.若BC=3,则点A的坐标是 (3,0) .
【解答】解:∵四边形OABC是平行四边形,BC=3,
∴OA=BC=3,
∵点A在x轴上,
∴点A的坐标为(3,0),
故答案为:(3,0).
11.(2021•广东)如图,在▱ABCD中,AD=5,AB=12,sinA=.过点D作DE⊥AB,垂足为E,则sin∠BCE= .
【解答】解:如图,过点B作BF⊥EC于点F,
∵DE⊥AB,AD=5,sinA==,
∴DE=4,
∴AE==3,
在▱ABCD中,AD=BC=5,AB=CD=12,
∴BE=AB﹣AE=12﹣3=9,
∵CD∥AB,
∴∠DEA=∠EDC=90°,∠CEB=∠DCE,
∴tan∠CEB=tan∠DCE,
∴===,
∴EF=3BF,
在Rt△BEF中,根据勾股定理,得
EF2+BF2=BE2,
∴(3BF)2+BF2=92,
解得,BF=,
∴sin∠BCE===.
故答案为:.
三.平行四边形的判定(共1小题)
12.(2021•牡丹江)如图,在四边形ABCD中,AB=DC,请添加一个条件,使四边形ABCD成为平行四边形,你所添加的条件为 AB∥DC(答案不唯一) .
【解答】解:添加条件为:AB∥DC,理由如下:
∵AB=DC,AB∥DC,
∴四边形ABCD为平行四边形,
故答案为:AB∥DC(答案不唯一).
四.菱形的性质(共5小题)
13.(2021•绵阳)如图,在菱形ABCD中,∠A=60°,G为AD中点,点E在BC延长线上,F、H分别为CE、GE中点,∠EHF=∠DGE,CF=,则AB= 4 .
【解答】解:连接CG,过点C作CM⊥AD,交AD的延长线于M,
∵F、H分别为CE、GE中点,
∴FH是△CEG的中位线,
∴HF=CG,
∵四边形ABCD是菱形,
∴AD∥BC,AB∥CD,
∴∠DGE=∠E,
∵∠EHF=∠DGE,
∴∠E=∠EHF,
∴HF=EF=CF,
∴CG=2HF=2,
∵AB∥CD,
∴∠CDM=∠A=60°,
设DM=x,则CD=2x,CM=,
∵点G为AD的中点,
∴DG=x,
在Rt△CMG中,由勾股定理得:
CG==2,
∴x=2,
∴AB=CD=2x=4.
故答案为:4.
14.(2021•黔东南州)如图,BD是菱形ABCD的一条对角线,点E在BC的延长线上,若∠ADB=32°,则∠DCE的度数为 64 度.
【解答】解:∵四边形ABCD为菱形,
∴BC=CD,AD∥BC,
∴∠CBD=∠BDC,∠CBD=∠ADB=32°,
∴∠CBD=∠BDC=32°,
∴∠DCE=∠CBD+∠BDC=64°,
故答案为:64.
15.(2021•黑龙江)菱形ABCD中,AB=6,∠ABC=60°,以AD为边作等腰直角三角形ADF,∠DAF=90°,连接BF,BD,则△BDF的面积为 27+或27﹣ .
【解答】解:当AF在AD上方时,如图,延长FA交BC于E,
∵AB=6,∠ABC=60°,
∴BE=3,AE=3,
S菱形ABCD=BC×AE=6×=18,
∴S△ABD==9,
S△ABF=,
S△ADF=,
∴S△BDF=S△ABD+S△ABF+S△ADF=9,
当AF在AD下方时,如图,
则S△BDF=S△ABF+S△ADF﹣S△ABD=27﹣9,
故答案为:27+9或27﹣9.
16.(2021•贵阳)如图,在平面直角坐标系中,菱形ABCD对角线的交点坐标是O(0,0),点B的坐标是(0,1),且BC=,则点A的坐标是 (2,0) .
【解答】解:∵四边形ABCD是菱形,
∴∠BOC=90°,OC=OA,
∵点B的坐标是(0,1),
∴OB=1,
在直角三角形BOC中,BC=,
∴OC==2,
∴点C的坐标(﹣2,0),
∵点A与点C关于原点对称,
∴点A的坐标(2,0).
故答案为:(2,0).
17.(2021•山西)如图,在菱形ABCD中,对角线AC,BD相交于点O,BD=8,AC=6,OE∥AB,交BC于点E,则OE的长为 .
【解答】解:∵菱形ABCD中,对角线AC,BD相交于点O,
∴OA=OC=,OB=,AC⊥BD,
∵OE∥AB,
∴BE=CE,
∴OE为△ABC的中位线,
∴,
在Rt△ABO中,由勾股定理得:
,
∴OE=.
五.菱形的判定(共1小题)
18.(2021•益阳)如图,已知四边形ABCD是平行四边形,从①AB=AD,②AC=BD,③∠ABC=∠ADC中选择一个作为条件,补充后使四边形ABCD成为菱形,则其选择是 ① (限填序号).
【解答】解:①∵四边形ABCD是平行四边形,AB=AD,
∴平行四边形ABCD是菱形;
②∵四边形ABCD是平行四边形,AC=BD,
∴平行四边形ABCD是矩形;
③∵四边形ABCD是平行四边形,
∴∠ABC=∠ADC,
因此∠ABC=∠ADC时,四边形ABCD还是平行四边形;
故答案为:①.
六.菱形的判定与性质(共1小题)
19.(2021•淄博)两张宽为3cm的纸条交叉重叠成四边形ABCD,如图所示.若∠α=30°,则对角线BD上的动点P到A,B,C三点距离之和的最小值是 6cm .
【解答】解:如图,作DE⊥BC于E,把△ABP绕点B逆时针旋转60°得到△A'BP′,
∵∠α=30°,DE=3cm,
∴CD=2DE=6cm,
同理:BC=AD=6cm,
由旋转的性质,A′B=AB=CD=6cm,BP′=BP,A'P′=AP,∠P′BP=60°,∠A'BA=60°,
∴△P′BP是等边三角形,
∴BP=PP',
∴PA+PB+PC=A'P′+PP'+PC,
根据两点间线段距离最短,可知当PA+PB+PC=A'C时最短,连接A'C,与BD的交点即为P点,即点P到A,B,C三点距离之和的最小值是A′C.
∵∠ABC=∠DCE=∠α=30°,∠A′BA=60°,
∴∠A′BC=90°,
∴A′C===6(cm),
因此点P到A,B,C三点距离之和的最小值是6cm,
故答案为6cm.
七.矩形的性质(共13小题)
20.(2021•内江)如图,矩形ABCD,AB=1,BC=2,点A在x轴正半轴上,点D在y轴正半轴上.当点A在x轴上运动时,点D也随之在y轴上运动,在这个运动过程中,点C到原点O的最大距离为 +1 .
【解答】解:如图,取AD的中点H,连接CH,OH,
∵矩形ABCD,AB=1,BC=2,
∴CD=AB=1,AD=BC=2,
∵点H是AD的中点,
∴AH=DH=1,
∴CH===,
∵∠AOD=90°,点H是AD的中点,
∴OH=AD=1,
在△OCH中,CO<OH+CH,
当点H在OC上时,CO=OH+CH,
∴CO的最大值为OH+CH=+1,
故答案为:+1.
21.(2021•西宁)如图,在矩形ABCD中,E为AD的中点,连接CE,过点E作CE的垂线交AB于点F,交CD的延长线于点G,连接CF.已知AF=,CF=5,则EF= .
【解答】解:∵点E是AD中点,
∴AE=DE,
在△AEF和△DEG中,
,
∴△AEF≌△DEG(ASA),
∴EF=EG,AF=DG=,
∵CE⊥EF,
∴CF=CG=5,
∵∠G=∠G,∠EDG=∠CEG=90°,
∴△EDG∽△CEG,
∴,
∴EG2=DG•CG=,
∴EG==EF,
故答案为.
22.(2021•锦州)如图,在矩形ABCD中,AB=6,BC=10,以点B为圆心、BC的长为半径画弧交AD于点E,再分别以点C,E为圆心、大于CE的长为半径画弧,两弧交于点F,作射线BF交CD于点G,则CG的长为 .
【解答】解:如图,连接EG,
根据作图过程可知:BF是∠EBC的平分线,
∴∠EBG=∠CBG,
在△EBG和△CBG中,
,
∴△EBG≌△CBG(SAS),
∴GE=GC,
在Rt△ABE中,AB=6,BE=BC=10,
∴AE==8,
∴DE=AD﹣AE=10﹣8=2,
在Rt△DGE中,DE=2,DG=DC﹣CG=6﹣CG,EG=CG,
∴EG2﹣DE2=DG2
∴CG2﹣22=(6﹣CG)2,
解得CG=.
故答案为:.
23.(2021•鞍山)如图,矩形ABCD中,AB=3,对角线AC,BD交于点O,DH⊥AC,垂足为点H,若∠ADH=2∠CDH,则AD的长为 3 .
【解答】解:∵四边形ABCD是矩形,
∴CD=AB=3,∠ADC=90°,
∵∠ADH=2∠CDH,
∴∠CDH=30°,∠ADH=60°,
∵DH⊥AC,
∴∠DHA=90°,
∴∠DAC=90°﹣60°=30°,
∴AD=CD=3,
故答案为:3.
24.(2021•阜新)如图,折叠矩形纸片ABCD,使点B的对应点E落在CD边上,GH为折痕,已知AB=6,BC=10.当折痕GH最长时,线段BH的长为 6.8 .
【解答】解:由题知,当E点与D点重合时GH最长,
设BH=x,则CH=10﹣x,HE=BH=x,
由勾股定理得,HC2+CE2=HE2,
即(10﹣x)2+62=x2,
解得x=6.8,
故答案为:6.8.
25.(2021•丹东)如图,在矩形ABCD中,连接BD,过点C作∠DBC平分线BE的垂线,垂足为点E,且交BD于点F;过点C作∠BDC平分线DH的垂线,垂足为点H,且交BD于点G,连接HE,若BC=2,CD=,则线段HE的长度为 .
【解答】解:∵BE平分∠DBC,
∴∠CBE=∠FBE,
∵CF⊥BE,
∴∠BEC=∠BEF=90°,
又∵BE=BE,
∴△BEC≌△BEF(ASA),
∴CE=FE,BF=BC=2,
同理:CH=GH,DG=CD=,
∴HE是△CGF的中位线,
∴HE=,
在矩形ABCD中,,,
由勾股定理得:BD=,
∴GF=BF+DG﹣BD=,
∴HE=,
故答案为:.
26.(2021•哈尔滨)如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥BC,垂足为点E,过点A作AF⊥OB,垂足为点F.若BC=2AF,OD=6,则BE的长为 3 .
【解答】解:∵四边形ABCD是矩形,
∴OA=OB=OC=OD,
∵OE⊥BC,
∴BE=CE,∠BOE=∠COE,
又∵BC=2AF,
∵AF=BE,
在Rt△AFO和Rt△BEO中,
,
∴Rt△AFO≌Rt△BEO(HL),
∴∠AOF=∠BOE,
∴∠AOF=∠BOE=∠COE,
又∵∠AOF+∠BOE+∠COE=180°,
∴∠BOE=60°,
∵OB=OD=6,
∴BE=OB•sin60°=6×=3,
故答案为:3.
27.(2021•徐州)如图,四边形ABCD与AEGF均为矩形,点E、F分别在线段AB、AD上.若BE=FD=2cm,矩形AEGF的周长为20cm,则图中阴影部分的面积为 24 cm2.
【解答】解:∵矩形AEGF的周长为20cm,
∴AF+AE=10cm,
∵AB=AE+BE,AD=AF+DF,BE=FD=2cm,
∴阴影部分的面积=AB×AD﹣AE×AF=(AE+2)(AF+2)﹣AE×AF=24(cm2),
故答案为:24.
28.(2021•贵港)如图,在矩形ABCD中,BD是对角线,AE⊥BD,垂足为E,连接CE,若tan∠ADB=,则tan∠DEC的值是 .
【解答】解:如图,过点C作CF⊥BD于点F,
在△ABE与△CDF中,
,
∴△ABE≌△CDF(AAS),
∴AE=CF,BE=FD,
∵AE⊥BD,tan∠ADB==,
设AB=a,则AD=2a,
∴BD=a,
∵S△ABD=BD•AE=AB•AD,
∴AE=CF=a,
∴BE=FD=a,
∴EF=BD﹣2BE=a﹣a=a,
∴tan∠DEC==,
故答案为:.
29.(2021•宜宾)如图,在矩形ABCD中,AD=AB,对角线相交于点O,动点M从点B向点A运动(到点A即停止),点N是AD上一动点,且满足∠MON=90°,连结MN.在点M、N运动过程中,则以下结论正确的是 ①②③④ .(写出所有正确结论的序号)
①点M、N的运动速度不相等;
②存在某一时刻使S△AMN=S△MON;
③S△AMN逐渐减小;
④MN2=BM2+DN2.
【解答】解:如图,当M与B点重合时,此时NO⊥BD,
∵在矩形ABCD中,AD=AB,
∴∠ADB=∠DAC=30°,
∴∠AOD=180°﹣30°﹣30°=120°,
∴∠NAO=∠AOD﹣∠NOD=120°﹣90°=30°,
∴∠DAO=∠NOA=30°,
∴AN=ON=DN•sin30°=DN,
∵AN+DN=AD,
∴AN=AD,
当M点运动到M'位置时,此时OM'⊥AB,N点运动到了N',
∵AC和BD是矩形ABCD的对角线,
∴M点运动的距离是MM'=AB,
N点运动的距离是NN'===AD,
又∵AD=AB,
∴NN'=×AB=AB=MM',
∴N点的运动速度是M点的,
故①正确,
当M在M'位置时,
∵∠OM'A=90°,∠N'AB=90°,∠M'ON'=90°,
∴四边形AM'ON'是矩形,
∴此时S△AMN=S△MON,
故②正确,
令AB=1,则AD=,设BM=x,则N点运动的距离为x,
∴AN=AD+x=+x,
∴S△AMN=AM•AN=(AB﹣BM)•AN=(1﹣x)(+x)=﹣x2,
∵0≤x≤1,在x的取值范围内函数﹣x2的图象随x增加而减小,
∴S△AMN逐渐减小,
故③正确,
∵MN2=(AB﹣BM)2+(AD﹣DN)2=AB2﹣2AB•BM+BM2+AD2﹣2AD•DN+DN2=(AB2﹣2AB•BM+3AB2﹣2•DN)+BM2+DN2=(4AB2﹣2AB•BM﹣2AB•DN)+BM2+DN2,
∵AN=AD+BM=AB+BM,
∴DN=AD﹣AN=AB﹣(AB+BM)=AB﹣BM,
∵2AB•DN=2AB×(AB﹣BM)=4AB2﹣2AB•BM,
∴MN2=(4AB2﹣2AB•BM﹣2AB•DN)+BM2+DN2=BM2+DN2,
故④正确,
方法二判定④:如图2,延长MO交CD于M',
∵∠MOB=∠M'OD,OB=OD,∠DBA=∠BDC,
∴△OMB≌△OM'D(ASA),
∴BM=DM',OM=OM',
连接NM',
∵NO⊥MM',
则MN=NM',
∵NM'2=DN2+DM'2,
∴MN2=BM2+DN2,
故④正确,
故答案为:①②③④.
30.(2021•贺州)如图,在矩形ABCD中,E,F分别为BC,DA的中点,以CD为斜边作Rt△GCD,GD=GC,连接GE,GF.若BC=2GC,则∠EGF= 45° .
【解答】解:∵CD为斜边作Rt△GCD,GD=GC,
∴∠GDC=∠GCD=45°,∠DGC=90°,
∴∠FDG=∠FDC+∠CDG=90°+45°=135°,
∵E,F分别为BC,DA的中点,BC=2GC,
∴DF=DG,CE=CG,
∴∠DGF=∠DFG=(180°﹣∠FDG)=×45°=22.5°,
同理,可得∠CEG=∠CGE=(180°﹣∠ECG)=,
∴∠EGF=∠DGC﹣∠DGF﹣∠EGC=90°﹣22.5°﹣22.5°=45°.
故答案为:45°.
31.(2021•福建)如图,在矩形ABCD中,AB=4,AD=5,点E,F分别是边AB,BC上的动点,点E不与A,B重合,且EF=AB,G是五边形AEFCD内满足GE=GF且∠EGF=90°的点.现给出以下结论:
①∠GEB与∠GFB一定互补;
②点G到边AB,BC的距离一定相等;
③点G到边AD,DC的距离可能相等;
④点G到边AB的距离的最大值为2.
其中正确的是 ①②④ .(写出所有正确结论的序号)
【解答】解:∵四边形ABCD是矩形,
∴∠B=90°,
又∵∠EGF=90°,四边形内角和是360°,
∴∠GEB+∠GFB=180°,
故①正确;
过G作GM⊥AB,GN⊥BC,分别交AB于M,交BC于N,
∵GE=GF且∠EGF=90°,
∴∠GEF=∠GFE=45°,
又∵∠B=90°,
∴∠BEF+∠EFB=90°,即∠BEF=90°﹣∠EFB,
∵∠GEM=180°﹣∠BEF﹣∠GEF=180°﹣45°﹣(90°﹣∠EFB)=45°+∠EFB,
∠GFN=∠EFB+∠GFE=∠EFB+45°,
∴∠GEM=∠GFN,
在△GEM和△GFN中,
,
∴△GEM≌△GFN(AAS),
∴GM=GN,
故②正确;
∵AB=4,AD=5,并由②知,
点G到边AD,DC的距离不相等,
故③错误:
在直角三角形EMG中,MG≤EG,当点E、M重合时EG最大,
∵EF=AB=4,
∴GE=EB=BF=FG=4×=2,
故④正确.
故答案为:①②④.
32.(2021•北京)如图,在矩形ABCD中,点E,F分别在BC,AD上,AF=EC.只需添加一个条件即可证明四边形AECF是菱形,这个条件可以是 AE=AF (写出一个即可).
【解答】解:这个条件可以是AE=AF,
理由:∵四边形ABCD是矩形,
∴AD∥BC,
即AF∥CE,
∵AF=EC,
∴四边形AECF是平行四边形,
∵AE=AF,
∴四边形AECF是菱形,
故答案为:AE=AF.
八.矩形的判定(共2小题)
33.(2021•黑龙江)如图,在△ABC中,D,E,F分别是AB,BC和AC边的中点,请添加一个条件 AB⊥BC ,使四边形BEFD为矩形.(填一个即可)
【解答】解:∵D,E,F分别是AB,BC和AC边的中点,
∴DF、EF都是△ABC的中位线,
∴DF∥BC,EF∥AB,
∴四边形BEFD为平行四边形,
当AB⊥BC时,∠B=90°,
∴平行四边形BEFD为矩形,
故答案为:AB⊥BC.
34.(2021•黑龙江)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,在不添加任何辅助线的情况下,请你添加一个条件 ∠ABC=90°(答案不唯一) ,使平行四边形ABCD是矩形.
【解答】解:添加一个条件为:∠ABC=90°,理由如下:
∵四边形ABCD是平行四边形,∠ABC=90°,
∴平行四边形ABCD是矩形,
故答案为:∠ABC=90°(答案不唯一).
九.正方形的性质(共11小题)
35.(2021•威海)如图,在正方形ABCD中,AB=2,E为边AB上一点,F为边BC上一点.连接DE和AF交于点G,连接BG.若AE=BF,则BG的最小值为 ﹣1 .
【解答】解:如图,取AD的中点T,连接BT,GT,
∵四边形ABCD是正方形,
∴AD=AB=2,∠DAE=∠ABF=90°,
在△DAE和△ABF中,
,
∴△DAE≌△ABF(SAS),
∴∠ADE=∠BAF,
∵∠BAF+∠DAF=90°,
∴∠EDA+∠DAF=90°,
∴∠AGD=90°,
∵DT=AT,
∴GT=AD=1,BT===,
∴BG≥BT﹣GT,
∴BG≥﹣1,
∴BG的最小值为﹣1.
故答案为:﹣1.
36.(2021•赤峰)如图,正方形ABCD的边长为2,点E是BC的中点,连接AE与对角线BD交于点G,连接CG并延长,交AB于点F,连接DE交CF于点H,连接AH.以下结论:①CF⊥DE;②=;③GH=;④AD=AH,其中正确结论的序号是 ①②④ .
【解答】解:∵四边形ABCD是边长为2的正方形,点E是BC的中点,
∴AB=AD=BC=CD=2,BE=CE=,∠DCE=∠ABE=90°,∠ABD=∠CBD=45°,
∴△ABE≌△DCE(SAS),
∴∠CDE=∠BAE,DE=AE,
∵AB=BC,∠ABG=∠CBG,BG=BG,
∴△ABG≌△CBG(SAS),
∴∠BAE=∠BCF,
∴∠BCF=∠CDE,
又∵∠CDE+∠CED=90°,
∴∠BCF+∠CED=90°,
∴∠CHE=90°,
∴CF⊥DE,故①正确;
∵CD=2,CE=,
由勾股定理得,DE===5,
∵S△DCE=CD×CE=DE×CH,
∴CH=2,
∵∠CHE=∠CBF,∠BCF=∠ECH,
∴△ECH∽△FCB,
∴=,
∴=,
∴CF=5,
∴HF=CF﹣CH=3,
∴=,故②正确;
如图,过点A作AM⊥DE于点M,
∵DC=2,CH=2,
由勾股定理得,DH===4,
∵∠CDH+∠ADM=90°,∠DAM+∠ADM=90°,
∴∠CDH=∠DAM,
又∵AD=CD,∠CHD=∠AMD=90°,
∴△ADM≌△DCH(AAS),
∴CH=DM=2,AM=DH=4,
∴MH=DM=2,
又∵AM⊥DH,
∴AD=AH,故④正确;
∵DE=5,DH=4,
∴HE=1,
∴ME=HE+MH=3,
∵AM⊥DE,CF⊥DE,
∴∠AME=∠GHE,
∵∠HEG=∠MEA,
∴△MEA∽△HEG,
∴=,
∴=,
∴HG=,故③错误.
综上,正确的有:①②④.
故答案为:①②④.
37.(2021•黄石)如图,在正方形ABCD中,点E、F分别在边BC、CD上,且∠EAF=45°,AE交BD于M点,AF交BD于N点.
(1)若正方形的边长为2,则△CEF的周长是 4 .
(2)下列结论:①BM2+DN2=MN2;②若F是CD的中点,则tan∠AEF=2;③连接MF,则△AMF为等腰直角三角形.其中正确结论的序号是 ①③ (把你认为所有正确的都填上).
【解答】解:(1)过A作AG⊥AE,交CD延长线于G,如图:
∵四边形ABCD是正方形,
∴AB=AD,∠BAD=∠ABC=∠ADC=90°,
∴∠BAE=90°﹣∠EAD=∠DAG,∠ABE=∠ADG=90°,
在△ABE和△ADG中,
,
∴△ABE≌△ADG(ASA),
∴BE=DG,AG=AE,
∵∠EAF=45°,
∴∠EAF=∠GAF=45°,
在△EAF和△GAF中,
,
∴△EAF≌△GAF(SAS),
∴EF=GF,
∴△CEF的周长:EF+EC+CF
=GF+EC+CF
=(DG+DF)+EC+CF
=DG+(DF+EC)+CF
=BE+CD+CF
=CD+BC,
∵正方形的边长为2,
∴△CEF的周长为4;
故答案为:4;
(2)①将△ABM绕点A逆时针旋转90°得到△ADH,连接NH,
∵∠EAF=45°,
∴∠EAF=∠HAF=45°,
∵△ABM绕点A逆时针旋转90°得到△ADH,
∴AH=AM,BM=DH,∠ABM=∠ADH=45°,
又AN=AN,
∴△AMN≌△AHN(SAS),
∴MN=HN,
而∠NDH=∠ABM+∠ADH=45°+45°=90°,
Rt△HDN中,HN2=DH2+DN2,
∴MN2=BM2+DN2,
故①正确;
②过A作AG⊥AE,交CD延长线于G,如图:
由(1)知:EF=GF=DF+DG=DF+BE,∠AEF=∠G,
设DF=x,BE=DG=y,则CF=x,CD=BC=AD=2x,EF=x+y,CE=BC﹣BE=2x﹣y,
Rt△EFC中,CE2+CF2=EF2,
∴(2x﹣y)2+x2=(x+y)2,
解得x=y,即=,
设x=3m,则y=2m,
∴AD=2x=6m,DG=2m,
Rt△ADG中,tanG===3,
∴tan∠AEF=3,
故②不正确;
③∵∠MAN=∠NDF=45°,∠ANM=∠DNF,
∴△AMN∽△DFN,
∴=,即=,
又∠AND=∠FNM,
∴△ADN∽△MFN,
∴∠MFN=∠ADN=45°,
∴∠MAF=∠MFA=45°,
∴△AMF为等腰直角三角形,故③正确,
故答案为:①③.
38.(2021•包头)如图,BD是正方形ABCD的一条对角线,E是BD上一点,F是CB延长线上一点,连接CE,EF,AF.若DE=DC,EF=EC,则∠BAF的度数为 22.5° .
【解答】解:如右图,连接AE,
∵BD为正方形ABCD的对角线,
∴∠BDC=45°,
∵DE=DC=AD,
∴∠DEC=∠DCE==67.5°,
∵∠DCB=90°,
∴∠BCE=90°﹣∠DCE=90°﹣67.5°=22.5°,
∵EF=EC,
∴∠FEC=180°﹣∠EFC﹣∠ECF=180°﹣22.5°﹣22.5°=135°,
∵∠BEC=180°﹣∠DEC=180°﹣67.5°=112.5°,
∴∠BEF=135°﹣112.5°=22.5°,
∵AD=DE,∠ADE=45°,
∴∠AED==67.5°,
∴∠BEF+∠AED=22.5°+67.5°=90°,
∴∠AEF=180°﹣90°=90°,
在△ADE和△EDC中,
,
∴△ADE≌△EDC(SAS),
∴AE=EC,
∴AE=EF,
即△AEF为等腰直角三角形,
∴∠AFE=45°,
∴∠AFB=∠AFE+∠BFE=45°+22.5°=67.5°,
∵∠ABF=90°,
∴∠BAF=90°﹣∠AFB=90°﹣67.5°=22.5°,
故答案为:22.5°.
39.(2021•铜仁市)如图,E、F分别是正方形ABCD的边AB、BC上的动点,满足AE=BF,连接CE、DF,相交于点G,连接AG,若正方形的边长为2.则线段AG的最小值为 .
【解答】解:如图1,在正方形ABCD中,AB=BC=2,∠B=∠DCF=90°,
∵AE=BF,
∴BE=CF,
在△DCF和△CBE中,
,
∴△DCF≌△CBE(SAS),
∴∠CDF=∠BCE,
∵∠DCE+∠BCE=90°,
∴∠CDF+∠DCE=90°,
∴∠CGD=90°,
∴点G在以DC为直径的圆上,
如图2,取CD的中点H,点G的运动路径是以H为圆心,以DC为直径的圆,
当E与A重合,点F与B重合,此时点G与AC与BD的交点O重合,
∴AG的最小值=AC=.
故答案为:.
40.(2021•张家界)如图,在正方形ABCD外取一点E,连接DE,AE,CE,过点D作DE的垂线交AE于点P,若DE=DP=1,PC=.下列结论:①△APD≌△CED;②AE⊥CE;③点C到直线DE的距离为;④S正方形ABCD=5+2,其中正确结论的序号为 ①②④ .
【解答】解:①∵DP⊥DE,
∴∠PDE=90°.
∴∠PDC+∠CDE=90°,
∵在正方形ABCD中,∠ADC=∠ADP+∠PDC=90°,AD=CD,
∴∠CDE=∠ADP.
在△APD和△CED中,
,
∴△APD≌△CED(SAS),
故①正确;
②∵△APD≌△CED,
∴∠APD=∠CED,
又∵∠APD=∠PDE+∠DEP,∠CED=∠CEA+∠DEP,
∴∠PDE=∠CEA=90°.
即AE⊥CE,故②正确;
③过点C作CF⊥DE的延长线于点F,如图,
∵DE=DP,∠PDE=90°,
∴∠DPE=∠DEP=45°.
又∵∠CEA=90°,
∴∠CEF=∠FCE=45°.
∵DP=DE=1,
∴PE==.
∴CE===2,
∴CF=EF==,
即点C到直线DE的距离为,故③错误;
④∵CF=EF=,DE=1,
在Rt△CDF中,CD2=CF2+DF2==2+3+=,
∴S正方形ABCD=,
故④正确.
综上所述,正确结论的序号为①②④,
故答案为:①②④.
41.(2021•襄阳)如图,正方形ABCD的对角线相交于点O,点E在边BC上,点F在CB的延长线上,∠EAF=45°,AE交BD于点G,tan∠BAE=,BF=2,则FG= 2 .
【解答】解:如图,过点E作EH⊥AC于点H,
则△EHC是等腰直角三角形,
设EH=a,则CH=a,CE=a,
在Rt△ABE中,∠ABE=90°,
∴tan∠BAE==,
∴BE=AB,
∴BE=CE=a,
∴AB=BC=2a,
∴AC=4a,AH=3a,
∴tan∠EAH==,
∵∠EAF=∠BAC=45°,
∴∠BAF=∠EAH,
∴tan∠BAF=tan∠EAH=,
∵BF=2,
∴AB=6,BE=CE=3,
∴AE=3,AF=2,
∴EF=5,
∵AD∥BC,
∴AD:BE=AG:GE=2:1,
∴GE=,
∵EF:GE=5:=:1,
AE:BE=3:3=:1,
∠GEF=∠BEA,
∴EF:GE=AE:BE,
∴△GEF∽△BEA,
∴∠EGF=∠ABE=90°,
∴∠AGF=90°,
∴△AGF是等腰直角三角形,
∴FG=AF=2.
故答案为:2.
42.(2021•铜仁市)如图,将边长为1的正方形ABCD绕点A顺时针旋转30°到AB1C1D1的位置,则阴影部分的面积是 2﹣ .
【解答】解:如图,
连接AE,根据题意可知AB1=AD=1,∠B1=∠D=90°,∠BAB1=30°,
在Rt△AB1E和Rt△ADE中,
,
∴Rt△AB1E≌Rt△ADE(HL),
∵∠B1AE=∠DAE=∠B1AD=30°,
∴=,解得DE=,
∴S四边形ADEB1=2S△ADE=2××AD×DE=,
∴S阴影部分=2(S正方形ABCD﹣S四边形ADEB1)=2×(1﹣)=2﹣,
故答案为:2﹣.
43.(2021•贺州)如图,在边长为6的正方形ABCD中,点E,F分别在BC,CD上,BC=3BE且BE=CF,AE⊥BF,垂足为G,O是对角线BD的中点,连接OG,则OG的长为 .
【解答】解:以B为原点,BC所在直线为x轴,建立直角坐标系,如图:
∵四边形ABCD是正方形,边长为6,
∴AB=BC=6,∠ABE=∠BCF=90°,
∵BC=3BE,BE=CF,
∴BE=CF=2,
∴E(2,0),F(6,2),A(0,6),D(6,6),
设直线AE解析式为y=ax+b,则,
解得,
∴直线AE解析式为y=﹣3x+6,
设直线BF解析式为y=cx,则2=6c,
解得c=,
∴直线BF解析式为y=x,
由得,
∴G(,),
∵O为BD中点,
∴O(3,3),
∴OG==,
故答案为:.
补充方法一:
过B作BH⊥OG于H,连接OA,如图:
∵边长为6的正方形ABCD,BC=3BE,
∴BE=2,AE==2,
由面积法可得BG==,
由O是正方形对角线BD中点知:∠AOB=90°,OB=BD=3,
而∠AGB=90°,
∴A、B、G、O四点共圆,
∴∠ABO=∠AGO=45°,
∴∠BGH=45°,
∴△BGH是等腰直角三角形,
∴BH=GH==,
在Rt△BOH中,OH==,
∴OG=OH﹣GH==.
补充方法二:
连接AC,如图:
由O是正方形对角线BD中点知:∠AOB=90°,
而∠AGB=90°,
∴A、B、G、O四点共圆,
∴∠ABO=∠AGO=45°=∠ACE,
又∠GAO=∠CAE,
∴△AOG∽△AEC,
∴=,
在Rt△ABE中,AE==2,
而CE=BC=4,OA==3,
∴=,
∴OG=.
44.(2021•绥化)在边长为4的正方形ABCD中,连接对角线AC、BD,点P是正方形边上或对角线上的一点,若PB=3PC,则PC= 1或或 .
【解答】解:如图1,∵四边形ABCD是正方形,AB=4,
∴AC⊥BD,AC=BD,OB=OD,AB=BC=AD=CD=4,∠ABC=∠BCD=90°,
在Rt△ABC中,由勾股定理得:AC===4,
∴OB=2,
∵PB=3PC,
∴设PC=x,则PB=3x,
有三种情况:
①点P在BC上时,如图2,
∵AD=4,PB=3PC,
∴PC=1;
②点P在AC上时,如图3,
在Rt△BPO中,由勾股定理得:BP2=BO2+OP2,
(3x)2=(2)2+(2﹣x)2,
解得:x=(负数舍去),
即PC=;
③点P在CD上时,如图4,
在Rt△BPC中,由勾股定理得:BC2+PC2=BP2,
42+x2=(3x)2,
解得:x=(负数舍去),
即PC=;
综上,PC的长是1或或.
故答案为:1或或.
45.(2021•广元)如图,在正方形ABCD中,点O是对角线BD的中点,点P在线段OD上,连接AP并延长交CD于点E,过点P作PF⊥AP交BC于点F,连接AF、EF,AF交BD于G,现有以下结论:①AP=PF;②DE+BF=EF;③PB﹣PD=BF;④S△AEF为定值;⑤S四边形PEFG=S△APG.以上结论正确的有 ①②③⑤ (填入正确的序号即可).
【解答】解:取AF的中点T,连接PT,BT.
∵AP⊥PF,四边形ABCD是正方形,
∴∠ABF=∠APF=90°,∠ABD=∠CBD=45°,
∵AT=TF,
∴BT=AT=TF=PT,
∴A,B,F,P四点共圆,
∴∠PAF=∠PBF=45°,
∴∠PAF=∠PFA=45°,
∴PA=PF,故①正确,
将△ADE绕点A顺时针旋转90°得到△ABM,
∵∠ADE=∠ABM=90°,∠ABC=90°,
∴∠ABC+∠ABM=180°,
∴C,B,M共线,
∵∠EAF=45°,
∴∠MAF=∠FAB+∠BAM=∠FAB+∠DAE=45°,
∴∠FAE=∠FAM,
在△FAM和△FAE中,
,
∴△FAM≌△FAE(SAS),
∴FM=EF,
∵FM=BF+BM=BF+DE,
∴EF=DE+BF,故②正确,
连接PC,过点P作PQ⊥CF于Q,过点P作PW⊥CD于W,则四边形PQCW是矩形,
在△PBA和PCB中,
,
∴△PBA≌△PBC(SAS),
∴PA=PC,
∵PF=PA,
∴PF=PC,
∵PQ⊥CF,
∴FQ=QC,
∵PB=BQ,PD=PW=CQ=FQ,
∴PB﹣PD=(BQ﹣FQ)=BF,故③正确,
∵△AEF≌△AMF,
∴S△AEF=S△AMF=FM•AB,
∵FM的长度是变化的,
∴△AEF的面积不是定值,故④错误,
∵A,B,F,P四点共圆,
∴∠APG=∠AFB,
∵△AFE≌△AFM,
∴∠AFE=∠AFB,
∴∠APG=∠AFE,
∵∠PAG=∠EAF,
∴△PAG∽△FAE,
∴=()2=()2=,
∴S四边形PEFG=S△APG,故⑤正确,
故答案为:①②③⑤.
一十.正方形的判定(共1小题)
46.(2021•黑龙江)如图,在矩形ABCD中,对角线AC、BD相交于点O,在不添加任何辅助线的情况下,请你添加一个条件 AB=AD(或AC⊥BD答案不唯一) ,使矩形ABCD是正方形.
【解答】解:AB=AD(或AC⊥BD答案不唯一).
理由:∵四边形ABCD是矩形,
又∵AB=AD,
∴四边形ABCD是正方形.
或∵四边形ABCD是矩形,
又∵AC⊥BD,
∴四边形ABCD是正方形,
故答案为:AB=AD(或AC⊥BD答案不唯一).
一十一.四边形综合题(共4小题)
47.(2021•攀枝花)如图,在正方形ABCD中,点M、N分别为边CD、BC上的点,且DM=CN,AM与DN交于点P,连接AN,点Q为AN的中点,连接PQ,BQ,若AB=8,DM=2,给出以下结论:①AM⊥DN;②∠MAN=∠BAN;③△PQN≌△BQN;④PQ=5.其中正确的结论有 ①④ (填上所有正确结论的序号)
【解答】解:∵四边形ABCD是正方形,
∴AD=DC,∠ADM=∠DCN=90°,
在△ADM和△DCN,
,
∴△ADM≌△DCN(SAS),
∴∠DAM=∠CDN,
∵∠CDN+∠ADP=90°,
∴∠ADP+∠DAM=90°,
∴∠APD=90°,
∴AM⊥DN,故①正确,
不妨假设∠MAN=∠BAN,
在△APN和△ABN中,
,
∴△PAN≌△ABN(AAS),
∴AB=AP,
∵这个与AP<AD,AB=AD,矛盾,
∴假设不成立,故②错误,
不妨假设△PQN≌△BQN,
则∠ANP=∠ANB,同法可证△APN≌△ABN,
∴AP=AB,
∵这个与AP<AD,AB=AD,矛盾,
∴假设不成立,故③错误,
∵DM=CN=2,AB=BC=8,
∴BN=6,
∵∠ABN=90°,
∴AN===10,
∵∠APN=90°,AQ=QN,
∴PQ=AN=5.故④正确,
故答案为:①④.
48.(2021•鞍山)如图,在正方形ABCD中,对角线AC,BD相交于点O,F是线段OD上的动点(点F不与点O,D重合),连接CF,过点F作FG⊥CF分别交AC,AB于点H,G,连接CG交BD于点M,作OE∥CD交CG于点E,EF交AC于点N.有下列结论:①当BG=BM时,AG=BG;②=;③当GM=HF时,CF2=CN•BC;④CN2=BM2+DF2.其中正确的是 ①③④ (填序号即可).
【解答】解:如图1中,过点G作GT⊥AC于T.
∵BG=BM,
∴∠BGM=∠BMG,
∵∠BGM=∠GAC+∠ACG,∠BMG=∠MBC+∠BCM,
∵四边形ABCD是正方形,
∴∠GAC=∠MBC=45°,AC=BC,
∴∠ACG=∠BCG,
∵GB⊥CB,GT⊥AC,
∴GB=GT,
∵====,
∴AG=BG,故①正确,
假设=成立,
∵∠FOH=∠COM,
∴△FOH∽△COM,
∴∠OFH=∠OCM,显然这个条件不成立,故②错误,
如图2中,过点M作MP⊥BC于P,MQ⊥AB于Q,连接AF.
∵∠OFH+∠FHO=90°,∠FHO+∠FCO=90°,
∴∠OFH=∠FCO,
∵AB=CB,∠ABF=∠CBF,BF=BF,
∴△ABF≌△CBF(SAS),
∴AF=CF,∠BAF=∠BCF,
∵∠CFG=∠CBG=90°,
∴∠BCF+∠BGF=180°,
∵∠BGF+∠AGF=180°,
∴∠AGF=∠BCF=∠GAF,
∴AF=FG,
∴FG=FC,
∴∠FCG=∠BCA=45°,
∴∠ACF=∠BCG,
∵MQ∥CB,
∴∠GMQ=∠BCG=∠ACF=∠OFH,
∵∠MQG=∠FOH=90°,FH=MG,
∴△FOH≌△MQG(AAS),
∴MQ=OF,
∵∠BMP=∠MBQ,MQ⊥AB,MP⊥BC,
∴MQ=MP,
∴MP=OF,
∵∠CPM=∠COF=90°,∠PCM=∠OCF,
∴△CPM≌△COF(AAS),
∴CM=CF,
∵OE∥AG,OA=OC,
∴EG=EC,
∵△FCG是等腰直角三角形,
∴∠GCF=45°,
∴∠CFN=∠CBM,
∵∠FCN=∠BCM,
∴△BCM∽△FCN,
∴=,
∴CF2=CB•CN,故③正确,
如图3中,将△CBM绕点C顺时针旋转90°得到△CDW,连接FW.则CM=CW,BM=DW,∠MCW=90°,∠CBM=∠CDW=45°,
∵∠FCG=∠FCW=45°,CM=CW,CF=CF,
∴△CFM≌△CFW(SAS),
∴FM=FW,
∵∠FDW=∠FDC+∠CDW=45°+45°=90°,
∴FW2=DF2+DW2,
∴FM2=BM2+DF2,
∵BD⊥AC,FG⊥CF,
∴∠COF=90°,∠CFG=90°,
∴∠FCN+∠OFC=90°,∠OFC+∠GFM=90°,
∴∠FCN=∠GFM,
∵∠NFC=∠FGM=45°,FG=CF,
∴△CFN≌△FGM(ASA),
∴CN=FM,
∴CN2=BM2+DF2,故④正确,
故答案为:①③④.
49.(2021•雅安)如图,在矩形ABCD中,AC,BD相交于点O,过点B作BF⊥AC于点M,交CD于点F,过点D作DE∥BF交AC于点N.交AB于点E,连接FN,EM.有下列结论:①四边形NEMF为平行四边形;②DN2=MC•NC;③△DNF为等边三角形;④当AO=AD时,四边形DEBF是菱形.其中,正确结论的序号 ①②④ .
【解答】解:∵四边形ABCD是矩形,
∴AD=BC,AD∥BC,CD∥AB
∴∠DAN=∠BCM,
∵BF⊥AC,DE∥BF,
∴DE⊥AC,
∴∠DNA=∠BMC=90°,
在△ADN和△CBM中,
,
∴△ADN≌△CBM(AAS),
∴DN=BM,
∵DF∥BE,DE∥BF,
∴四边形DFBE是平行四边形,
∴DE=BF,
∴EN=FM,
∵NE∥FM,
∴四边形NEMF是平行四边形,故①正确,
∵△ADN≌△CBM,
∴AN=CM,
∴CN=AM,
∵∠AMB=∠BMC=∠ABC=90°,
∴∠ABM+∠CBM=90°,∠CBM+∠BCM=90°,
∴∠ABM=∠BCM,
∴△AMB∽△BMC,
∴=,
∵DN=BM,AM=CN,
∴DN2=CM•CN,故②正确,
若△DNF是等边三角形,则∠CDN=60°,∠ACD=30°,
这个与题目条件不符合,故③错误,
∵四边形ABCD是矩形,
∴OA=OD,
∵AO=AD,
∴AO=AD=OD,
∴△AOD是等边三角形,
∴∠ADO=∠DAN=60°,
∴∠ABD=90°﹣∠ADO=30°,
∵DE⊥AC,
∴∠ADN=∠ODN=30°,
∴∠ODN=∠ABD,
∴DE=BE,
∵四边形DEBF是平行四边形,
∴四边形DEBF是菱形;故④正确.
故答案为:①②④.
50.(2021•枣庄)如图,∠BOD=45°,BO=DO,点A在OB上,四边形ABCD是矩形,连接AC,BD交于点E,连接OE交AD于点F.下列4个判断:①OE⊥BD;②∠ADB=30°;③DF=AF;④若点G是线段OF的中点,则△AEG为等腰直角三角形,其中,判断正确的是 ①③④ .(填序号)
【解答】解:①∵四边形ABCD是矩形,
∴EB=ED,
∵BO=DO,
∴OE⊥BD 故①正确;
②∵∠BOD=45°,BO=DO,
∴∠ABD=(180°﹣45°)=67.5°,
∴∠ADB=90°﹣27.5°=22.5°,故②错误;
③∵四边形ABCD是矩形,
∴∠OAD=∠BAD=90°,
∴∠ABD+∠ADB=90°,
∵OB=OD,BE=DE,
∴OE⊥BD,
∴∠BOE+∠OBE=90°,
∴∠BOE=∠BDA,
∵∠BOD=45°,∠OAD=90°,
∴∠ADO=45°,
∴AO=AD,
∴△AOF≌△ABD(ASA),
∴OF=BD,
∴AF=AB,
连接BF,如图1,
∴BF=AF,
∵BE=DE,OE⊥BD,
∴DF=BF,
∴DF=AF,故③正确;
④根据题意作出图形,如图2,
∵G是OF的中点,∠OAF=90°,
∴AG=OG,
∴∠AOG=∠OAG,
∵∠AOD=45°,OE平分∠AOD,
∴∠AOG=∠OAG=22.5°,
∴∠FAG=67.5°,∠ADB=∠AOF=22.5°,
∵四边形ABCD是矩形,
∴EA=ED,
∴∠EAD=∠EDA=22.5°,
∴∠EAG=90°,
∵∠AGE=∠AOG+∠OAG=45°,
∴∠AEG=45°,
∴AE=AG,
∴△AEG为等腰直角三角形,故④正确;
∴判断正确的是①③④.
故答案为:①③④.
概率03填空题-2021中考数学真题知识点分类汇编(含答案,48题): 这是一份概率03填空题-2021中考数学真题知识点分类汇编(含答案,48题),共23页。
2021中考数学真题知识点分类汇编-圆填空题1(含答案): 这是一份2021中考数学真题知识点分类汇编-圆填空题1(含答案),共34页。
2021中考数学真题知识点分类汇编-圆填空题2(含答案): 这是一份2021中考数学真题知识点分类汇编-圆填空题2(含答案),共35页。