江苏省连云港市宁海中学2021-2022学年八年级下学期期中质量调研数学试卷(word版含答案)
展开2021—2022学年度第二学期期中学业质量调研
八年级数学
注意事项:
1.本试卷共4页.全卷满分150分.考试时间为100分钟.考生答题全部答在答题纸上,答在本试卷上无效.
2.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.
一、选择题(每小题3分,满分24分)
1.下列图形中,既是轴对称图形又是中心对称图形的是(▲)
A. B. C. D.
2.某学习小组为了了解本校2000名学生的视力情况,随机抽查了500名学生,其中有200名学生近视.对于这个问题上,下列说法中正确的是(▲)
A.每名学生是总体的一个个体
B.样本容量是500
C.样本是500名学生
D.该校一定有1000名学生近视
3.下列调查中,比较适合使用抽样调查的是(▲)
A.检查人造卫星重要零部件的质量
B.对某本书中的印刷错误的调查
C.长江中现有鱼的种类
D.在防疫新冠病毒期间,对进入学校的人员进行体温检测
4.下面条件中,能判定四边形是平行四边形的条件是(▲)
A.一组对角相等 B.对角线互相平分
C.一组对边相等 D.对角线互相垂直
5.如果把分式中的x和y都扩大为原来的2倍,那么分式的值(▲)
A.扩大为原来的4倍 B.扩大为原来的2倍
C.不变 D.缩小为原来的
6.菱形具有而矩形不具有的性质是(▲)
A.对角线互相平分 B.对角相等
C.对角线互相垂直 D.对边平行且相等
7.如图,将△ABC绕点B顺时针旋转角α,得到△A1BC1,此时点A,点B,点C1在一条直线上,若∠A1BC=22°,则旋转角α=(▲)
A.79° B.80° C.78° D.81°
8.如图,△ABC中,AD平分∠BAC,E是BC中点,AD⊥BD,AC=7,AB=4,则DE的值为(▲)
A.1 B.2 C. D.
二、填空题(每小题4分,满分40分)
9.一只不透明的袋子中有1个红球、1个黑球和2个白球,这些球除颜色不同外其它都相同,搅匀后从中任意摸出1个球,摸出白球可能性 ▲ 摸出红球可能性(填“等于”或“小于”或“大于”).
10.为了直观地表示世界七大洲的面积各占全球陆地面积的百分比,最适合使用的统计图
是 ▲ 统计图.
11.要使分式有意义,则x的取值范围是 ▲ .
12.约分:= ▲ .
13.某种油菜籽在相同条件下发芽试验的结果如表:
每批粒数n | 100 | 300 | 400 | 600 | 1000 | 2000 | 3000 |
发芽的频数m | 96 | 284 | 380 | 571 | 948 | 1902 | 2848 |
发芽的频率 | 0.960 | 0.947 | 0.950 | 0.952 | 0.948 | 0.951 | 0.949 |
那么这种油菜籽发芽的概率是 ▲ (结果精确到0.01).
14.我们把一个样本的40个数据分成4组,其中第1、2、3组的频数分别为6、12、14,则
第4组的频率为 ▲ .
15.在□ABCD中,∠B+∠D=100°,则∠A等于 ▲ .
16.若菱形的对角线长分别是8和10,则菱形的面积是 ▲ .
17.如图,已知□ABCD三个顶点坐标是A(﹣1,0)、B(﹣2,﹣3)、C(2,﹣1),那么
第四个顶点D的坐标是 ▲ .
18.正方形ABCD的边长为12,点E在BC上,且BE=5,点P是对角线BD上的一个动点,
则PE+PC的最小值是 ▲ .
三、解答题(本大题共8题,满分86分).
19.(本题满分15分)约分:
⑴ ⑵ ⑶
20.(本题满分8分)如图,□ABCD中,点E、F分别在AB、CD上,且AF=EC.
求证:BE=DF.
21.(本题满分8分)如图,在△ABC中,∠ACB=90°,D、E、F别为AB,BC,CA的中点,CD=2cm,求EF的长.
22.(本题满分9分)如图,用3个全等的菱形构成活动衣帽架,顶点A、E、F、C、G、H是上、下两排挂钩,根据需要可以改变挂钩之间的距离(比如AC两点可以自由上下活动),若菱形的边长为13厘米,要使两排挂钩之间的距离AC为24厘米,并在点B、M处固定,则B、M之间的距离是多少?
23.(本题满分10分)端午节吃粽子是中华民族的传统习俗.某食品厂为了解市民对去年销量较好的A、B、C、D四种粽子的喜爱情况,在端午节前对某小区居民进行抽样调查(每人只选一种粽子),并将调查情况绘制成两幅尚不完整的统计图.
根据以上信息,解答下列问题:
(1)补全条形统计图;
(2)扇形统计图中,D种粽子所在扇形的圆心角是 °;
(3)这个小区有2500人,请你估计爱吃B种粽子的人数为 .
24.(本题满分12分)如图,已知△ABC中,A(﹣2,3),B(﹣4,0),C(﹣1,0).
(1)画出△ABC关于原点成中心对称的△A′B′C′.
(2)画出△ABC绕坐标原点O逆时针旋转90°后的图形A1B1C1.
(3)写出A1的坐标.
25.(本题满分12分)如图,在△ABC中,O是AC上的任意一点(不与点A、C重合),过点O平行于BC的直线l分别与∠BCA、∠DCA的平分线交于点E、F.
(1)OE与OF相等吗?证明你的结论.
(2)试确定点O的位置,使四边形AECF是矩形,并加以证明.
26.(本题满分12分)如图,由两个等宽的矩形叠合而得到四边形ABCD.
(1)试判断四边形ABCD的形状并证明.
(2)若矩形长为8cm,宽为2cm,求四边形ABCD的最大面积.
2021—2022学年度第二学期期中学业质量调研
八年级数学
参考答案及评分建议
一.选择题(每小题3分,共24分)
题号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
答案 | D | B | C | B | B | C | A | D |
二、填空题(每小题3分,共30分)
9.大于 10.扇形 11.x≠﹣1 12. 13.0.95
14.0.2 15.130° 16.40 17.(3,2) 18.13
19.(本题满分15分)
解:(1)=………………………………2分
=………………………………………… 5分
(2)=…………………………………… 3分
=m;…………………………………………………5分
(3)= …………………………… 3分
=.………………………………………… 5分
20.(本题满分8分)
证明:∵四边形ABCD是平行四边形,
∴AD=CB,AD∥CB,…………………………………2分
∴∠DAF=∠BCE,……………………………………4分
在△DAF和△BCE中,
,
∴△DAF≌△BCE(SAS),…………………………6分
∴BE=DF.……………………………………………8分
21.(本题满分8分)
解:在Rt△ABC中,∠ACB=90°,D为AB中点,CD=2cm,
∴AB=2CD=4cm,………………………………… 3分
∵E,F分别为BC,CA的中点,
∴EF是△ABC的中位线,……………………………………………………5分
∴EF=AB=2cm.………………………………………………………… 8分
22.(本题满分9分)解:连接AC,BD交于点O,
∵四边形ABCD是菱形,
∴AO=AC=12厘米,AC⊥BD,…………………………………………4分
∴BO===5厘米,……………………………6分
∴BD=2BO=10厘米,…………………………………………………… 8分
∴BM=3BD=30厘米.…………………………………………………… 9分
23.(本题满分10分)
(1)补全条形统计图;……………………………………………………3分
(2)扇形统计图中,D种粽子所在扇形的圆心角是 108 °;…… 6分
(3)这个小区有2500人,请你估计爱吃B种粽子的人数为 500 .
…………………………………………………………………………10分
24.(本题满分12分)
解:(1)如图,△A′B′C′为所作;………………………………4分
(2)如图,△A1B1C1为所作;…………………………………………8分
(3)A1的坐标为(﹣3,﹣2).…………12分
25.(本题满分12分)
(1)解:相等;理由是:∵直线l∥BC,
∴∠OEC=∠ECB,………………………1分
∵CE平分∠ACB,
∴∠OCE=∠BCE,…………………… 2分
∴∠OEC=∠OCE,…………………… 3分
∴OE=OC,…………………………… 4分
同理OF=OC,…………………………5分
∴OE=OF.…………………………… 6分
(2)解:O在AC的中点上时,四边形AECF是矩形,
……………………………………… 8分
理由是:∵OA=OC,OE=OF,
∴四边形AECF是平行四边形,………10分
∵OE=OF=OC=OA,
∴AC=EF,
∴平行四边形AECF是矩形.……… 12分
26.(本题满分12分)
解:(1)四边形ABCD是菱形.……2分
理由:作AR⊥BC于R,AS⊥CD于S,
由题意知:AD∥BC,AB∥CD,
∴四边形ABCD是平行四边形,……3分
∵两个矩形的宽度相等,
∴AR=AS,……………………………………………………………4分
∵AR•BC=AS•CD,
∴BC=CD,………………………………………………………… 5分
∴平行四边形ABCD是菱形;………………………………………6分
(2)当这两张纸片叠合成如图2时,菱形的面积最大,
设BC=x,则CG=8﹣x,CD=BC=x,
在Rt△CBG中,CG2+BG2=BC2,
∴(8﹣x)2+22=x2,………………………………………………9分
解得x=,………………………………………………………11分
∴S=BG•DG=.………………………………………………12分
江苏省连云港市海州区2021-2022学年九年级上学期期中学业质量调研数学试卷: 这是一份江苏省连云港市海州区2021-2022学年九年级上学期期中学业质量调研数学试卷,共4页。试卷主要包含了填空题等内容,欢迎下载使用。
江苏省连云港市海州区2021-2022学年七年级上学期期中学业质量调研数学试卷: 这是一份江苏省连云港市海州区2021-2022学年七年级上学期期中学业质量调研数学试卷,共4页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
江苏省连云港市海州区2022-2023学年八年级下学期期末质量调研数学试卷: 这是一份江苏省连云港市海州区2022-2023学年八年级下学期期末质量调研数学试卷,共14页。