![2022年中考数学二轮专题《方程实际问题》解答题练习09(含答案)01](http://img-preview.51jiaoxi.com/2/3/12931422/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年中考数学二轮专题《方程实际问题》解答题练习09(含答案)02](http://img-preview.51jiaoxi.com/2/3/12931422/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022年中考数学二轮专题《方程实际问题》解答题练习09(含答案)
展开某花卉种植基地欲购进甲、乙两种君子兰进行培育。若购进甲种2株,乙种3株,则共需成本l700元;若购进甲种3株,乙种l株.则共需成本l500元。
(1)求甲、乙两种君子兰每株成本分别为多少元?
(2)该种植基地决定在成本不超过30000元的前提下购入甲、乙两种君子兰,若购入乙种君子兰的株数比甲种君子兰的3倍还多10株,求最多购进甲种君子兰多少株?
某商场购进甲、乙两种服装后,都加价40%标价出售,“春节”期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售.某顾客购买甲、乙两种服装共付款182元,两种服装标价之和为210元.问这两种服装的进价和标价各是多少元?
某车间有60名工人,生产一种螺栓和螺帽,平均每人每小时生产螺栓15个或螺帽10个,应分配多少人生产螺栓和螺帽,才能刚好配套?(每个螺栓配两个螺帽)
随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加.
(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个,求该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率;
(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位),因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t.
①若该养老中心建成后可提供养老床位200个,求t的值;
②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?
如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.
为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.
(1)求每套队服和每个足球的价格是多少?
(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;
(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?
某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.
(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;
(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.
一般情况下不成立,但有些数可以使得它成立.例如:m=n=0时,我们称使得成立的一对数m,n为“相伴数对”,记为(m,n)。
(1) 若(m,1)是“相伴数对”,则m= ;
(2) (m,n)是“相伴数对”,则代数式的值为 。
\s 0 答案解析
解:
答案:15;45.
详解:设x人生产螺栓,则有(60-x)人生产螺帽,由题意得:15x×2=10(60-x),解得:x=15,60-15=45(人),因此,15人生产螺栓,则有45人生产螺帽.
解:
(1)设该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率为x,由题意可列出方程:
2(1+x)2=2.88,
解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).
答:该市这两年拥有的养老床位数的平均年增长率为20%.
(2)①设规划建造单人间的房间数为t(10≤t≤30),则建造双人间的房间数为2t,三人间的房间数为100﹣3t,
由题意得:t+4t+3=200,
解得:t=25.
答:t的值是25.
②设该养老中心建成后能提供养老床位y个,
由题意得:y=t+4t+3=﹣4t+300(10≤t≤30),
∵k=﹣4<0,
∴y随t的增大而减小.
当t=10时,y的最大值为300﹣4×10=260(个),
当t=30时,y的最小值为300﹣4×30=180(个).
答:该养老中心建成后最多提供养老床位260个,最少提供养老床位180个.
解:设BC边的长为x米,则AB=CD=米,根据题意得:×x=120,
解得:x1=12,x2=20,∵20>16,∴x2=20不合题意,舍去,答:矩形草坪BC边的长为12米.
【解答】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,
解得x=100,x+50=150.答:每套队服150元,每个足球100元;
(2)到甲商场购买所花的费用为:150×100+100(a﹣)=100a+14000(元),
到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);
(3)当在两家商场购买一样合算时,100a+14000=80a+15000,解得a=50.
所以购买的足球数等于50个时,则在两家商场购买一样合算;
购买的足球数多于50个时,则到乙商场购买合算;
购买的足球数少于50个时,则到甲商场购买合算
(1)m=-;(2)-3;m=-n,代入得-3;
中考数学三轮冲刺《方程实际问题》解答题冲刺练习09(含答案): 这是一份中考数学三轮冲刺《方程实际问题》解答题冲刺练习09(含答案),共6页。试卷主要包含了请说明理由,理由如下等内容,欢迎下载使用。
2022年中考数学二轮专题《函数实际问题》解答题练习09(含答案): 这是一份2022年中考数学二轮专题《函数实际问题》解答题练习09(含答案),共7页。
2022年中考数学二轮专题《方程实际问题》解答题练习10(含答案): 这是一份2022年中考数学二轮专题《方程实际问题》解答题练习10(含答案),共5页。试卷主要包含了5,或x=﹣2,5小时;,5×,等内容,欢迎下载使用。