搜索
    上传资料 赚现金
    专题20 综合探究(解答题)-备战2021年中考数学临考题号押题(全国通用)(28376940)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题20 综合探究(解答题)(原卷版).doc
    • 解析
      专题20 综合探究(解答题)(解析版).doc
    专题20 综合探究(解答题)-备战2021年中考数学临考题号押题(全国通用)(28376940)01
    专题20 综合探究(解答题)-备战2021年中考数学临考题号押题(全国通用)(28376940)02
    专题20 综合探究(解答题)-备战2021年中考数学临考题号押题(全国通用)(28376940)03
    专题20 综合探究(解答题)-备战2021年中考数学临考题号押题(全国通用)(28376940)01
    专题20 综合探究(解答题)-备战2021年中考数学临考题号押题(全国通用)(28376940)02
    专题20 综合探究(解答题)-备战2021年中考数学临考题号押题(全国通用)(28376940)03
    还剩4页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题20 综合探究(解答题)-备战2021年中考数学临考题号押题(全国通用)(28376940)

    展开
    这是一份专题20 综合探究(解答题)-备战2021年中考数学临考题号押题(全国通用)(28376940),文件包含专题20综合探究解答题解析版doc、专题20综合探究解答题原卷版doc等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。

    专题20综合探究


    【2021哈尔滨】已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于点C,直线OC的解析式为y=x,过点C作CM⊥y轴,垂足为M,OM=9.
    (1)如图1,求直线AB的解析式;
    (2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求的值;
    (3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ﹣FG=AF,求点P的坐标.


    【分析】(1)求出A,B两点坐标,利用待定系数法解决问题即可.
    (2)由题意直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),求出PE,OD(用a表示)即可解决问题.
    (3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.证明△OFS≌△FQR(AAS),推出SF=QR,再证明△BSG≌△QRG(AAS),推出SG=GR=6,设FR=m,则AR=m,AF=m,QR=SF=12﹣m,GQ﹣FG=AF,根据GQ2=GR2+QR2,可得(m+6)2=62+(12﹣m)2,解得m=4,由题意tan∠DHE=tan∠DPH,可得=,由(2)可知DE=3a,PD=12a,推出=,可得DH=6a,推出tan∠PHD===2,由∠PHD=∠FHT,可得tan∠FHT==2,推出HT=2,再根据OT=OD+DH+HT,构建方程求出a即可解决问题.
    【解答】解:(1)∵CM⊥y轴,OM=9,
    ∴y=9时,9=x,解得x=12,
    ∴C(12,9),
    ∵AC⊥x轴,
    ∴A(12,0),
    ∵OA=OB,
    ∴B(0,﹣12),
    设直线AB的解析式为y=kx+b,则有,
    解得,
    ∴直线AB的解析式为y=x﹣12.

    (2)如图2中,

    ∵∠CMO=∠MOA=∠OAC=90°,
    ∴四边形OACM是矩形,
    ∴AO=CM=12,
    ∵NC=OM=9,
    ∴MN=CM﹣NC=12﹣9=3,
    ∴N(3,9),
    ∴直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),
    ∴OD=4a,
    把x=4a,代入y=x中,得到y=3a,
    ∴E(4a,3a),
    ∴DE=3a,
    把x=4a代入,y=3x中,得到y=12a,
    ∴P(4a,12a),
    ∴PD=12a,
    ∴PE=PD﹣DE=12a﹣3a=9a,
    ∴=.

    (3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.

    ∵GF∥x轴,
    ∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR,
    ∴∠OFR=∠R=∠AOS=∠BSG=90°,
    ∴四边形OSRA是矩形,
    ∴OS=AR,
    AR=OA=12,
    ∵OA=OB,
    ∴∠OBA=∠OAB=45°,
    ∴∠FAR=90°﹣45°=45°,
    ∴∠FAR=∠AFR,
    ∴FR=AR=OS,
    ∵OF⊥FQ,
    ∴∠OSR=∠R=∠OFQ=90°,
    ∴∠OFS+∠QFR=90°,
    ∵∠QFR+∠FQR=90°,
    ∴∠OFS=∠FQR,
    ∴△OFS≌△FQR(AAS),
    ∴SF=QR,
    ∵∠SFB=∠AFR=45°,
    ∴∠SBF=∠SFB=45°,
    ∴SF=SB=QR,
    ∵∠SGB=∠QGR,∠BSG=∠R,
    ∴△BSG≌△QRG(AAS),
    ∴SG=GR=6,
    设FR=m,则AR=m,AF=m,QR=SF=12﹣m,
    ∵GQ﹣FG=AF,
    ∴GQ=×m+6﹣m=m+6,
    ∵GQ2=GR2+QR2,
    ∴(m+6)2=62+(12﹣m)2,
    解得m=4,
    ∴FS=8,AR=4,
    ∵∠OAB=∠FAR,FT⊥OA,FR⊥AR,
    ∴FT=FR=AR=4,∠OTF=90°,
    ∴四边形OSFT是矩形,
    ∴OT=SF=8,
    ∵∠DHE=∠DPH,
    ∴tan∠DHE=tan∠DPH,
    ∴=,
    由(2)可知DE=3a,PD=12a,
    ∴=,
    ∴DH=6a,
    ∴tan∠PHD===2,
    ∵∠PHD=∠FHT,
    ∴tan∠FHT==2,
    ∴HT=2,
    ∵OT=OD+DH+HT,
    ∴4a+6a+2=8,
    ∴a=,
    ∴OD=,PD=12×=,
    ∴P(,).
    【点评】本题属于一次函数综合题,考查了矩形的判定和性质,一次函数的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.
    【2021鹤岗】以的两边、为边,向外作正方形和正方形,连接,过点作于,延长交于点.
     
    (1)如图1,若,,易证:;
    (2)如图2,;如图3,,(1)中结论,是否成立,若成立,选择一个图形进行证明;若不成立,写出你的结论,并说明理由.
    (1)见解析;(2)时,(1)中结论成立,证明见解析;时,(1)中结论成立,证明见解析.
    【解析】
    【分析】
    (1)由等腰直角三角形的性质得出∠MAC=45°,证得∠EAN=∠NAG,由等腰三角形的性质得出结论;
    (2)如图1,2,证明方法相同,利用“AAS”证明△ABM和△EAP全等,根据全等三角形对应边相等可得EP=AM,同理可证GQ=AM,从而得到EP=GQ,再利用“AAS”证明△EPN和△GQN全等,根据全等三角形对应边相等可得EN=NG.
    【详解】
    (1)证明:∵,,∴,
    ∵,
    ∴,
    ∴,
    同理,
    ∴,
    ∵四边形和四边形为正方形,
    ∴,
    ∴.
    (2)如图1,时,(1)中结论成立.

    理由:过点作交的延长线于,
    过点作于,
    ∵四边形是正方形,
    ∴,,
    ∴,
    ∵,
    ∴,
    ∴,
    在和中,

    ∴,
    ∴,
    同理可得:,
    ∴,
    在和中,

    ∴,
    ∴.
    如图2,时,(1)中结论成立.

    理由:过点作交的延长线于,
    过点作于,
    ∵四边形是正方形,
    ∴,,
    ∴,
    ∵,
    ∴,
    ∴,
    在和中,

    ∴,
    ∴,
    同理可得:,
    ∴,
    在和中,

    ∴,
    ∴.
    【点睛】
    本题是四边形综合题,考查了正方形的性质,全等三角形的判定及性质,等腰三角形的性质,等腰直角三角形的性质等知识;正确作出辅助线,构造全等三角形,运用全等三角形的性质是解题的关键.
    【2021恩施州】如图,是的直径,直线与相切于点,直线与相切于点,点(异于点)在上,点在上,且,延长与相交于点E,连接并延长交于点.

    (1)求证:是的切线;
    (2)求证:;
    (3)如图,连接并延长与分别相交于点、,连接.若,,求.

    (1)见详解;(2)见详解;(3)
    【解析】
    【分析】

    (1)连接OD,根据等边对等角可知:∠CAD=∠CDA,∠OAD=∠ODA,再根据切线的性质可知∠CAO=∠CAD+∠OAD=∠CDA+∠ODA=90°=∠ODC,由切线的判定定理可得结论;
    (2)连接BD,根据等边对等角可知∠ODB=∠OBD,再根据切线的性质可知∠ODE=∠OBE=90°,由等量减等量差相等得∠EDB=∠EBD,再根据等角对等边得到ED=EB,然后根据平行线的性质及对顶角相等可得∠EDF=∠EFD,推出DE=EF,由此得出结论;
    (3)过E点作EL⊥AM于L,根据勾股定理可求出BE的长,即可求出tan∠BOE的值,再利用倍角公式即可求出tan∠BHE的值.
    【详解】
    (1)连接OD,
    ∵,
    ∴∠CAD=∠CDA,
    ∵OA=OD
    ∴∠OAD =∠ODA,
    ∵直线与相切于点,
    ∴∠CAO=∠CAD+∠OAD=90°
    ∴∠ODC=∠CDA+∠ODA=90°
    ∴CE是的切线;

    (2)连接BD
    ∵OD=OB
    ∴∠ODB=∠OBD,
    ∵CE是的切线,BF是的切线,
    ∴∠OBD=∠ODE=90°
    ∴∠EDB=∠EBD
    ∴ED=EB
    ∵AM⊥AB,BN⊥AB
    ∴AM∥BN
    ∴∠CAD=∠BFD
    ∵∠CAD=∠CDA=∠EDF
    ∴∠BFD=∠EDF
    ∴EF=ED
    ∴BE=EF
    (3)过E点作EL⊥AM于L,则四边形ABEL是矩形,
    设BE=x,则CL=4-x,CE=4+X
    ∴(4+x)2=(4-x)2+62
    解得:x=

    ∵∠BOE=2∠BHE

    解得:tan∠BHE=或-3(-3不和题意舍去)
    ∴tan∠BHE=

    【点睛】
    本题主要考查了切线的判定和性质,等腰三角形的判定和性质,平行线的判定和性质,三角函数/,勾股定理等知识,熟练掌握这些知识点并能熟练应用是解题的关键.

    此类题应该首先明确它的考题特点,避免盲目和无从下手,同时明确题目所涉及的数学知识及应用,明确题目问题是什么要解决什么样的问题,再结合我们所学习的知识合理解答。


    1.如图1,已知,,点D在上,连接并延长交于点F.
    (1)猜想:线段与的数量关系为_____;
    (2)探究:若将图1的绕点B顺时针方向旋转,当小于时,得到图2,连接并延长交于点F,则(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由;
    (3)拓展:图1中,过点E作,垂足为点G.当的大小发生变化,其它条件不变时,若,,直接写出的长.

    (1)AF=EF;(2)成立,理由见解析;(3)12
    【解析】
    【分析】
    (1) 延长DF到G点,并使FG=DC,连接GE,证明△ACF△EDG,进而得到△GEF为等腰三角形,即可证明AF=GE=EF;
    (2)证明原理同(1),延长DF到G点,并使FG=DC,连接GE,证明△ACF△EDG,进而得到△GEF为等腰三角形,即可证明AF=GE=EF;
    (3)补充完整图后证明四边形AEGC为矩形,进而得到∠ABC=∠ABE=∠EBG=60°即可求解.
    【详解】
    解:(1)延长DF到G点,并使FG=DC,连接GE,如下图所示

    ∵,
    ∴DE=AC,BD=BC,
    ∴∠CDB=∠DCB,且∠CDB=∠ADF,
    ∴∠ADF=∠DCB,
    ∵∠ACB=90°,
    ∴∠ACD+∠DCB=90°,
    ∵∠EDB=90°,
    ∴∠ADF+∠FDE=90°,
    ∴∠ACD=∠FDE,
    又延长DF使得FG=DC,
    ∴FG+DF=DC+DF,
    ∴DG=CF,
    在△ACF和△EDG中,

    ∴△ACF△EDG(SAS),
    ∴GE=AF,∠G=∠AFC,
    又∠AFC=∠GFE,
    ∴∠G=∠GFE
    ∴GE=EF
    ∴AF=EF,
    故AF与EF的数量关系为:AF=EF.
    故答案为:AF=EF;
    (2)仍旧成立,理由如下:
    延长DF到G点,并使FG=DC,连接GE,如下图所示
    设BD延长线DM交AE于M点,

    ∵,
    ∴DE=AC,BD=BC,
    ∴∠CDB=∠DCB,且∠CDB=∠MDF,
    ∴∠MDF=∠DCB,
    ∵∠ACB=90°,
    ∴∠ACD+∠DCB=90°,
    ∵∠EDB=90°,
    ∴∠MDF+∠FDE=90°,
    ∴∠ACD=∠FDE,
    又延长DF使得FG=DC,
    ∴FG+DF=DC+DF,
    ∴DG=CF,
    在△ACF和△EDG中,

    ∴△ACF△EDG(SAS),
    ∴GE=AF,∠G=∠AFC,
    又∠AFC=∠GFE,
    ∴∠G=∠GFE
    ∴GE=EF,
    ∴AF=EF,
    故AF与EF的数量关系为:AF=EF.
    故答案为:AF=EF;
    (3)如下图所示:

    ∵BA=BE,
    ∴∠BAE=∠BEA,
    ∵∠BAE=∠EBG,
    ∴∠BEA=∠EBG,
    ∴AECG,
    ∴∠AEG+∠G=180°,
    ∴∠AEG=90°,
    ∴∠ACG=∠G=∠AEG=90°,
    ∴四边形AEGC为矩形,
    ∴AC=EG,且AB=BE,
    ∴Rt△ACBRt△EGB(HL),
    ∴BG=BC=6,∠ABC=∠EBG,
    又∵ED=AC=EG,且EB=EB,
    ∴Rt△EDBRt△EGB(HL),
    ∴DB=GB=6,∠EBG=∠ABE,
    ∴∠ABC=∠ABE=∠EBG=60°,
    ∴∠BAC=30°,
    ∴在Rt△ABC中由30°所对的直角边等于斜边的一半可知:

    故答案为:.
    【点睛】
    本题属于四边形的综合题,考查了三角形全等的性质和判定,矩形的性质和判定,本题的关键是延长DF到G点并使FG=DC,进而构造全等,本题难度稍大,需要作出合适的辅助线.
    2.实践操作:第一步:如图1,将矩形纸片沿过点D的直线折叠,使点A落在上的点处,得到折痕,然后把纸片展平.第二步:如图2,将图1中的矩形纸片沿过点E的直线折叠,点C恰好落在上的点处,点B落在点处,得到折痕,交于点M,交于点N,再把纸片展平.

    问题解决:
    (1)如图1,填空:四边形的形状是_____________________;
    (2)如图2,线段与是否相等?若相等,请给出证明;若不等,请说明理由;
    (3)如图2,若,求的值.
    (1)正方形;(2),见解析;(3)
    【解析】
    【分析】
    (1)有一组邻边相等且一个角为直角的平行四边形是正方形;
    (2)连接,由(1)问的结论可知,,又因为矩形纸片沿过点E的直线折叠,可知折叠前后对应角以及对应边相等,有,,,可以证明和全等,得到,从而有;
    (3)由,有;由折叠知,,可以计算出;用勾股定理计算出DF的长度,再证明得出等量关系,从而得到的值.
    【详解】
    (1)解:∵ABCD是平行四边形,
    ∴,
    ∴四边形是平行四边形
    ∵矩形纸片沿过点D的直线折叠,使点A落在上的点处



    ∴四边形的形状是正方形
    故最后答案为:四边形的形状是正方形;
    (2)
    理由如下:如图,连接,由(1)知:
    ∵四边形是矩形,

    由折叠知:

    又,




    (3)∵,∴
    由折叠知:,∴


    设,则
    在中,由勾股定理得:
    解得:,即
    如图,延长交于点G,则



    ∵,∴

    【点睛】
    (1)本问主要考查了正方形的定义,即有一组邻边相等且一个角为直角的平行四边形是正方形,其中明确折叠前后对应边、对应角相等是解题的关键;
    (2)本问利用了正方形的性质以及折叠前后对应边、对应角相等来证明三角形全等,再根据角相等则边相等即可做题,其中知道角相等则边相等的思想是解题的关键;
    (3)本问考查了全等三角形、相似三角形的性质、角相等则正切值相等以及勾股定理的应用,其中知道三角形相似则对应边成比例是解题的关键.

    1.问题背景:如图(1),已知,求证:;
    尝试应用:如图(2),在和中,,,与相交于点.点在边上,,求的值;
    拓展创新:如图(3),是内一点,,,,,直接写出的长.

    问题背景:见详解;尝试应用:3;拓展创新:.
    【解析】
    【分析】
    问题背景:通过得到,,再找到相等的角,从而可证;
    尝试应用:连接CE,通过可以证得,得到,然后去证,,通过对应边成比例即可得到答案;
    拓展创新:在AD的右侧作∠DAE=∠BAC,AE交BD延长线于E,连接CE,通过,,然后利用对应边成比例即可得到答案.
    【详解】
    问题背景:∵,
    ∴∠BAC=∠DAE, ,
    ∴∠BAD+∠DAC=CAE+∠DAC,
    ∴∠BAD=∠CAE,
    ∴;
    尝试应用:连接CE,

    ∵,,
    ∴,
    ∴,
    ∵∠BAD+∠DAC=CAE+∠DAC,
    ∴∠BAD=∠CAE,
    ∴,
    ∴,
    由于,,
    ∴,
    即,
    ∵,
    ∴,
    ∵,,
    ∴,
    又∵,
    ∴,
    ∴,即,
    又∵
    ∴,
    ∴;
    拓展创新:
    如图,在AD的右侧作∠DAE=∠BAC,AE交BD延长线于E,连接CE,

    ∵∠ADE=∠BAD+∠ABD,∠ABC=∠ABD+∠CBD,,
    ∴∠ADE=∠ABC,
    又∵∠DAE=∠BAC,
    ∴,
    ∴,
    又∵∠DAE=∠BAC,
    ∴∠BAD=∠CAE,
    ∴,
    ∴,
    设CD=x,在直角三角形BCD中,由于∠CBD=30°,
    ∴,,
    ∴,
    ∴,
    ∵,
    ∴,

    【点睛】
    本题考查了相似三角形的综合问题,熟练掌握相似三角形的判定和性质是解题的关键.
    2.定义:有一组对角互余的四边形叫做对余四边形.
    理解:
    (1)若四边形是对余四边形,则与的度数之和为______;
    证明:
    (2)如图1,是的直径,点在上,,相交于点D.
    求证:四边形是对余四边形;

    探究:
    (3)如图2,在对余四边形中,,,探究线段,和之间有怎样的数量关系?写出猜想,并说明理由.
    (1)90°或270°;(2)见解析;(3),理由见解析
    【解析】
    【分析】
    (1)分当∠A和∠C互余时,当∠B和∠D互余时,两种情况求解;
    (2)连接BO,得到∠BON+∠BOM=180°,再利用圆周角定理证明∠C+∠A=90°即可;
    (3)作△ABD的外接圆O,分别延长AC,BC,DC,交圆O于E,F,G,连接DF,DE,EF,先证明GF是圆O的直径,得到,再证明△ABC∽△FEC,△ACD∽△GCE,△BCD∽△GCF,可得,,从而得出,根据△ABC为等边三角形可得AB=AC=BC,从而得到.
    【详解】
    解:(1)∵四边形是对余四边形,
    当∠A和∠C互余时,
    ∠A+∠C=90°,
    当∠B与∠D互余时,
    ∠B+∠D=90°,
    则∠A+∠C=360°-90°=270°,
    故答案为:90°或270°;
    (2)如图,连接BO,
    可得:∠BON=2∠C,∠BOM=2∠A,
    而∠BON+∠BOM=180°,
    ∴2∠C+2∠A=180°,
    ∴∠C+∠A=90°,
    ∴四边形是对余四边形;

    (3)∵四边形ABCD为对于四边形,∠ABC=60°,
    ∴∠ADC=30°,
    如图,作△ABD的外接圆O,分别延长AC,BC,DC,交圆O于E,F,G,连接DF,DE,EF,
    则∠AEF=∠ABC=60°,∠AEG=∠ADG=30°,
    ∴∠AEF+∠AEG=90°,即∠FEG=90°,
    ∴GF是圆O的直径,
    ∵AB=BC,
    ∴△ABC为等边三角形,
    ∵∠ABC=∠AEF,∠ACB=∠ECF,
    ∴△ABC∽△FEC,得:,则,
    同理,△ACD∽△GCE,得:,则,
    △BCD∽△GCF,得:,
    可得:,
    而,
    ∴,
    ∴,
    ∴,
    ∵AB=BC=AC,
    ∴.

    【点睛】
    本题考查了相似三角形的判定和性质,四边形的新定义问题,圆周角定理,等边三角形的判定和性质,多边形内角和,解题的关键是理解对余四边形的概念,结合所学知识求证.









    相关试卷

    专题18 概率(解答题)-备战2021年中考数学临考题号押题(全国通用)(28376925): 这是一份专题18 概率(解答题)-备战2021年中考数学临考题号押题(全国通用)(28376925),文件包含专题18概率解答题解析版doc、专题18概率解答题原卷版doc等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。

    专题17 二次函数应用(解答题)-备战2021年中考数学临考题号押题(全国通用)(28376919): 这是一份专题17 二次函数应用(解答题)-备战2021年中考数学临考题号押题(全国通用)(28376919),文件包含专题17二次函数应用解答题解析版doc、专题17二次函数应用解答题原卷版doc等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。

    专题16 反比例函数应用(解答题)-备战2021年中考数学临考题号押题(全国通用)(28376913): 这是一份专题16 反比例函数应用(解答题)-备战2021年中考数学临考题号押题(全国通用)(28376913),文件包含专题16反比例函数应用解答题解析版doc、专题16反比例函数应用解答题原卷版doc等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题20 综合探究(解答题)-备战2021年中考数学临考题号押题(全国通用)(28376940)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map