所属成套资源:备战2021年中考数学临考题号押题(全国通用版)
专题20 综合探究(解答题)-备战2021年中考数学临考题号押题(全国通用)(28376940)
展开
这是一份专题20 综合探究(解答题)-备战2021年中考数学临考题号押题(全国通用)(28376940),文件包含专题20综合探究解答题解析版doc、专题20综合探究解答题原卷版doc等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
专题20综合探究
【2021哈尔滨】已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于点C,直线OC的解析式为y=x,过点C作CM⊥y轴,垂足为M,OM=9.
(1)如图1,求直线AB的解析式;
(2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求的值;
(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ﹣FG=AF,求点P的坐标.
【分析】(1)求出A,B两点坐标,利用待定系数法解决问题即可.
(2)由题意直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),求出PE,OD(用a表示)即可解决问题.
(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.证明△OFS≌△FQR(AAS),推出SF=QR,再证明△BSG≌△QRG(AAS),推出SG=GR=6,设FR=m,则AR=m,AF=m,QR=SF=12﹣m,GQ﹣FG=AF,根据GQ2=GR2+QR2,可得(m+6)2=62+(12﹣m)2,解得m=4,由题意tan∠DHE=tan∠DPH,可得=,由(2)可知DE=3a,PD=12a,推出=,可得DH=6a,推出tan∠PHD===2,由∠PHD=∠FHT,可得tan∠FHT==2,推出HT=2,再根据OT=OD+DH+HT,构建方程求出a即可解决问题.
【解答】解:(1)∵CM⊥y轴,OM=9,
∴y=9时,9=x,解得x=12,
∴C(12,9),
∵AC⊥x轴,
∴A(12,0),
∵OA=OB,
∴B(0,﹣12),
设直线AB的解析式为y=kx+b,则有,
解得,
∴直线AB的解析式为y=x﹣12.
(2)如图2中,
∵∠CMO=∠MOA=∠OAC=90°,
∴四边形OACM是矩形,
∴AO=CM=12,
∵NC=OM=9,
∴MN=CM﹣NC=12﹣9=3,
∴N(3,9),
∴直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),
∴OD=4a,
把x=4a,代入y=x中,得到y=3a,
∴E(4a,3a),
∴DE=3a,
把x=4a代入,y=3x中,得到y=12a,
∴P(4a,12a),
∴PD=12a,
∴PE=PD﹣DE=12a﹣3a=9a,
∴=.
(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.
∵GF∥x轴,
∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR,
∴∠OFR=∠R=∠AOS=∠BSG=90°,
∴四边形OSRA是矩形,
∴OS=AR,
AR=OA=12,
∵OA=OB,
∴∠OBA=∠OAB=45°,
∴∠FAR=90°﹣45°=45°,
∴∠FAR=∠AFR,
∴FR=AR=OS,
∵OF⊥FQ,
∴∠OSR=∠R=∠OFQ=90°,
∴∠OFS+∠QFR=90°,
∵∠QFR+∠FQR=90°,
∴∠OFS=∠FQR,
∴△OFS≌△FQR(AAS),
∴SF=QR,
∵∠SFB=∠AFR=45°,
∴∠SBF=∠SFB=45°,
∴SF=SB=QR,
∵∠SGB=∠QGR,∠BSG=∠R,
∴△BSG≌△QRG(AAS),
∴SG=GR=6,
设FR=m,则AR=m,AF=m,QR=SF=12﹣m,
∵GQ﹣FG=AF,
∴GQ=×m+6﹣m=m+6,
∵GQ2=GR2+QR2,
∴(m+6)2=62+(12﹣m)2,
解得m=4,
∴FS=8,AR=4,
∵∠OAB=∠FAR,FT⊥OA,FR⊥AR,
∴FT=FR=AR=4,∠OTF=90°,
∴四边形OSFT是矩形,
∴OT=SF=8,
∵∠DHE=∠DPH,
∴tan∠DHE=tan∠DPH,
∴=,
由(2)可知DE=3a,PD=12a,
∴=,
∴DH=6a,
∴tan∠PHD===2,
∵∠PHD=∠FHT,
∴tan∠FHT==2,
∴HT=2,
∵OT=OD+DH+HT,
∴4a+6a+2=8,
∴a=,
∴OD=,PD=12×=,
∴P(,).
【点评】本题属于一次函数综合题,考查了矩形的判定和性质,一次函数的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.
【2021鹤岗】以的两边、为边,向外作正方形和正方形,连接,过点作于,延长交于点.
(1)如图1,若,,易证:;
(2)如图2,;如图3,,(1)中结论,是否成立,若成立,选择一个图形进行证明;若不成立,写出你的结论,并说明理由.
(1)见解析;(2)时,(1)中结论成立,证明见解析;时,(1)中结论成立,证明见解析.
【解析】
【分析】
(1)由等腰直角三角形的性质得出∠MAC=45°,证得∠EAN=∠NAG,由等腰三角形的性质得出结论;
(2)如图1,2,证明方法相同,利用“AAS”证明△ABM和△EAP全等,根据全等三角形对应边相等可得EP=AM,同理可证GQ=AM,从而得到EP=GQ,再利用“AAS”证明△EPN和△GQN全等,根据全等三角形对应边相等可得EN=NG.
【详解】
(1)证明:∵,,∴,
∵,
∴,
∴,
同理,
∴,
∵四边形和四边形为正方形,
∴,
∴.
(2)如图1,时,(1)中结论成立.
理由:过点作交的延长线于,
过点作于,
∵四边形是正方形,
∴,,
∴,
∵,
∴,
∴,
在和中,
,
∴,
∴,
同理可得:,
∴,
在和中,
,
∴,
∴.
如图2,时,(1)中结论成立.
理由:过点作交的延长线于,
过点作于,
∵四边形是正方形,
∴,,
∴,
∵,
∴,
∴,
在和中,
,
∴,
∴,
同理可得:,
∴,
在和中,
,
∴,
∴.
【点睛】
本题是四边形综合题,考查了正方形的性质,全等三角形的判定及性质,等腰三角形的性质,等腰直角三角形的性质等知识;正确作出辅助线,构造全等三角形,运用全等三角形的性质是解题的关键.
【2021恩施州】如图,是的直径,直线与相切于点,直线与相切于点,点(异于点)在上,点在上,且,延长与相交于点E,连接并延长交于点.
(1)求证:是的切线;
(2)求证:;
(3)如图,连接并延长与分别相交于点、,连接.若,,求.
(1)见详解;(2)见详解;(3)
【解析】
【分析】
(1)连接OD,根据等边对等角可知:∠CAD=∠CDA,∠OAD=∠ODA,再根据切线的性质可知∠CAO=∠CAD+∠OAD=∠CDA+∠ODA=90°=∠ODC,由切线的判定定理可得结论;
(2)连接BD,根据等边对等角可知∠ODB=∠OBD,再根据切线的性质可知∠ODE=∠OBE=90°,由等量减等量差相等得∠EDB=∠EBD,再根据等角对等边得到ED=EB,然后根据平行线的性质及对顶角相等可得∠EDF=∠EFD,推出DE=EF,由此得出结论;
(3)过E点作EL⊥AM于L,根据勾股定理可求出BE的长,即可求出tan∠BOE的值,再利用倍角公式即可求出tan∠BHE的值.
【详解】
(1)连接OD,
∵,
∴∠CAD=∠CDA,
∵OA=OD
∴∠OAD =∠ODA,
∵直线与相切于点,
∴∠CAO=∠CAD+∠OAD=90°
∴∠ODC=∠CDA+∠ODA=90°
∴CE是的切线;
(2)连接BD
∵OD=OB
∴∠ODB=∠OBD,
∵CE是的切线,BF是的切线,
∴∠OBD=∠ODE=90°
∴∠EDB=∠EBD
∴ED=EB
∵AM⊥AB,BN⊥AB
∴AM∥BN
∴∠CAD=∠BFD
∵∠CAD=∠CDA=∠EDF
∴∠BFD=∠EDF
∴EF=ED
∴BE=EF
(3)过E点作EL⊥AM于L,则四边形ABEL是矩形,
设BE=x,则CL=4-x,CE=4+X
∴(4+x)2=(4-x)2+62
解得:x=
∵∠BOE=2∠BHE
解得:tan∠BHE=或-3(-3不和题意舍去)
∴tan∠BHE=
【点睛】
本题主要考查了切线的判定和性质,等腰三角形的判定和性质,平行线的判定和性质,三角函数/,勾股定理等知识,熟练掌握这些知识点并能熟练应用是解题的关键.
此类题应该首先明确它的考题特点,避免盲目和无从下手,同时明确题目所涉及的数学知识及应用,明确题目问题是什么要解决什么样的问题,再结合我们所学习的知识合理解答。
1.如图1,已知,,点D在上,连接并延长交于点F.
(1)猜想:线段与的数量关系为_____;
(2)探究:若将图1的绕点B顺时针方向旋转,当小于时,得到图2,连接并延长交于点F,则(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由;
(3)拓展:图1中,过点E作,垂足为点G.当的大小发生变化,其它条件不变时,若,,直接写出的长.
(1)AF=EF;(2)成立,理由见解析;(3)12
【解析】
【分析】
(1) 延长DF到G点,并使FG=DC,连接GE,证明△ACF△EDG,进而得到△GEF为等腰三角形,即可证明AF=GE=EF;
(2)证明原理同(1),延长DF到G点,并使FG=DC,连接GE,证明△ACF△EDG,进而得到△GEF为等腰三角形,即可证明AF=GE=EF;
(3)补充完整图后证明四边形AEGC为矩形,进而得到∠ABC=∠ABE=∠EBG=60°即可求解.
【详解】
解:(1)延长DF到G点,并使FG=DC,连接GE,如下图所示
∵,
∴DE=AC,BD=BC,
∴∠CDB=∠DCB,且∠CDB=∠ADF,
∴∠ADF=∠DCB,
∵∠ACB=90°,
∴∠ACD+∠DCB=90°,
∵∠EDB=90°,
∴∠ADF+∠FDE=90°,
∴∠ACD=∠FDE,
又延长DF使得FG=DC,
∴FG+DF=DC+DF,
∴DG=CF,
在△ACF和△EDG中,
,
∴△ACF△EDG(SAS),
∴GE=AF,∠G=∠AFC,
又∠AFC=∠GFE,
∴∠G=∠GFE
∴GE=EF
∴AF=EF,
故AF与EF的数量关系为:AF=EF.
故答案为:AF=EF;
(2)仍旧成立,理由如下:
延长DF到G点,并使FG=DC,连接GE,如下图所示
设BD延长线DM交AE于M点,
∵,
∴DE=AC,BD=BC,
∴∠CDB=∠DCB,且∠CDB=∠MDF,
∴∠MDF=∠DCB,
∵∠ACB=90°,
∴∠ACD+∠DCB=90°,
∵∠EDB=90°,
∴∠MDF+∠FDE=90°,
∴∠ACD=∠FDE,
又延长DF使得FG=DC,
∴FG+DF=DC+DF,
∴DG=CF,
在△ACF和△EDG中,
,
∴△ACF△EDG(SAS),
∴GE=AF,∠G=∠AFC,
又∠AFC=∠GFE,
∴∠G=∠GFE
∴GE=EF,
∴AF=EF,
故AF与EF的数量关系为:AF=EF.
故答案为:AF=EF;
(3)如下图所示:
∵BA=BE,
∴∠BAE=∠BEA,
∵∠BAE=∠EBG,
∴∠BEA=∠EBG,
∴AECG,
∴∠AEG+∠G=180°,
∴∠AEG=90°,
∴∠ACG=∠G=∠AEG=90°,
∴四边形AEGC为矩形,
∴AC=EG,且AB=BE,
∴Rt△ACBRt△EGB(HL),
∴BG=BC=6,∠ABC=∠EBG,
又∵ED=AC=EG,且EB=EB,
∴Rt△EDBRt△EGB(HL),
∴DB=GB=6,∠EBG=∠ABE,
∴∠ABC=∠ABE=∠EBG=60°,
∴∠BAC=30°,
∴在Rt△ABC中由30°所对的直角边等于斜边的一半可知:
.
故答案为:.
【点睛】
本题属于四边形的综合题,考查了三角形全等的性质和判定,矩形的性质和判定,本题的关键是延长DF到G点并使FG=DC,进而构造全等,本题难度稍大,需要作出合适的辅助线.
2.实践操作:第一步:如图1,将矩形纸片沿过点D的直线折叠,使点A落在上的点处,得到折痕,然后把纸片展平.第二步:如图2,将图1中的矩形纸片沿过点E的直线折叠,点C恰好落在上的点处,点B落在点处,得到折痕,交于点M,交于点N,再把纸片展平.
问题解决:
(1)如图1,填空:四边形的形状是_____________________;
(2)如图2,线段与是否相等?若相等,请给出证明;若不等,请说明理由;
(3)如图2,若,求的值.
(1)正方形;(2),见解析;(3)
【解析】
【分析】
(1)有一组邻边相等且一个角为直角的平行四边形是正方形;
(2)连接,由(1)问的结论可知,,又因为矩形纸片沿过点E的直线折叠,可知折叠前后对应角以及对应边相等,有,,,可以证明和全等,得到,从而有;
(3)由,有;由折叠知,,可以计算出;用勾股定理计算出DF的长度,再证明得出等量关系,从而得到的值.
【详解】
(1)解:∵ABCD是平行四边形,
∴,
∴四边形是平行四边形
∵矩形纸片沿过点D的直线折叠,使点A落在上的点处
∴
∴
∵
∴四边形的形状是正方形
故最后答案为:四边形的形状是正方形;
(2)
理由如下:如图,连接,由(1)知:
∵四边形是矩形,
∴
由折叠知:
∴
又,
∴
∴
∴
(3)∵,∴
由折叠知:,∴
∵
∴
设,则
在中,由勾股定理得:
解得:,即
如图,延长交于点G,则
∴
∴
∴
∵,∴
∴
【点睛】
(1)本问主要考查了正方形的定义,即有一组邻边相等且一个角为直角的平行四边形是正方形,其中明确折叠前后对应边、对应角相等是解题的关键;
(2)本问利用了正方形的性质以及折叠前后对应边、对应角相等来证明三角形全等,再根据角相等则边相等即可做题,其中知道角相等则边相等的思想是解题的关键;
(3)本问考查了全等三角形、相似三角形的性质、角相等则正切值相等以及勾股定理的应用,其中知道三角形相似则对应边成比例是解题的关键.
1.问题背景:如图(1),已知,求证:;
尝试应用:如图(2),在和中,,,与相交于点.点在边上,,求的值;
拓展创新:如图(3),是内一点,,,,,直接写出的长.
问题背景:见详解;尝试应用:3;拓展创新:.
【解析】
【分析】
问题背景:通过得到,,再找到相等的角,从而可证;
尝试应用:连接CE,通过可以证得,得到,然后去证,,通过对应边成比例即可得到答案;
拓展创新:在AD的右侧作∠DAE=∠BAC,AE交BD延长线于E,连接CE,通过,,然后利用对应边成比例即可得到答案.
【详解】
问题背景:∵,
∴∠BAC=∠DAE, ,
∴∠BAD+∠DAC=CAE+∠DAC,
∴∠BAD=∠CAE,
∴;
尝试应用:连接CE,
∵,,
∴,
∴,
∵∠BAD+∠DAC=CAE+∠DAC,
∴∠BAD=∠CAE,
∴,
∴,
由于,,
∴,
即,
∵,
∴,
∵,,
∴,
又∵,
∴,
∴,即,
又∵
∴,
∴;
拓展创新:
如图,在AD的右侧作∠DAE=∠BAC,AE交BD延长线于E,连接CE,
∵∠ADE=∠BAD+∠ABD,∠ABC=∠ABD+∠CBD,,
∴∠ADE=∠ABC,
又∵∠DAE=∠BAC,
∴,
∴,
又∵∠DAE=∠BAC,
∴∠BAD=∠CAE,
∴,
∴,
设CD=x,在直角三角形BCD中,由于∠CBD=30°,
∴,,
∴,
∴,
∵,
∴,
∴
【点睛】
本题考查了相似三角形的综合问题,熟练掌握相似三角形的判定和性质是解题的关键.
2.定义:有一组对角互余的四边形叫做对余四边形.
理解:
(1)若四边形是对余四边形,则与的度数之和为______;
证明:
(2)如图1,是的直径,点在上,,相交于点D.
求证:四边形是对余四边形;
探究:
(3)如图2,在对余四边形中,,,探究线段,和之间有怎样的数量关系?写出猜想,并说明理由.
(1)90°或270°;(2)见解析;(3),理由见解析
【解析】
【分析】
(1)分当∠A和∠C互余时,当∠B和∠D互余时,两种情况求解;
(2)连接BO,得到∠BON+∠BOM=180°,再利用圆周角定理证明∠C+∠A=90°即可;
(3)作△ABD的外接圆O,分别延长AC,BC,DC,交圆O于E,F,G,连接DF,DE,EF,先证明GF是圆O的直径,得到,再证明△ABC∽△FEC,△ACD∽△GCE,△BCD∽△GCF,可得,,从而得出,根据△ABC为等边三角形可得AB=AC=BC,从而得到.
【详解】
解:(1)∵四边形是对余四边形,
当∠A和∠C互余时,
∠A+∠C=90°,
当∠B与∠D互余时,
∠B+∠D=90°,
则∠A+∠C=360°-90°=270°,
故答案为:90°或270°;
(2)如图,连接BO,
可得:∠BON=2∠C,∠BOM=2∠A,
而∠BON+∠BOM=180°,
∴2∠C+2∠A=180°,
∴∠C+∠A=90°,
∴四边形是对余四边形;
(3)∵四边形ABCD为对于四边形,∠ABC=60°,
∴∠ADC=30°,
如图,作△ABD的外接圆O,分别延长AC,BC,DC,交圆O于E,F,G,连接DF,DE,EF,
则∠AEF=∠ABC=60°,∠AEG=∠ADG=30°,
∴∠AEF+∠AEG=90°,即∠FEG=90°,
∴GF是圆O的直径,
∵AB=BC,
∴△ABC为等边三角形,
∵∠ABC=∠AEF,∠ACB=∠ECF,
∴△ABC∽△FEC,得:,则,
同理,△ACD∽△GCE,得:,则,
△BCD∽△GCF,得:,
可得:,
而,
∴,
∴,
∴,
∵AB=BC=AC,
∴.
【点睛】
本题考查了相似三角形的判定和性质,四边形的新定义问题,圆周角定理,等边三角形的判定和性质,多边形内角和,解题的关键是理解对余四边形的概念,结合所学知识求证.
相关试卷
这是一份专题18 概率(解答题)-备战2021年中考数学临考题号押题(全国通用)(28376925),文件包含专题18概率解答题解析版doc、专题18概率解答题原卷版doc等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
这是一份专题17 二次函数应用(解答题)-备战2021年中考数学临考题号押题(全国通用)(28376919),文件包含专题17二次函数应用解答题解析版doc、专题17二次函数应用解答题原卷版doc等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
这是一份专题16 反比例函数应用(解答题)-备战2021年中考数学临考题号押题(全国通用)(28376913),文件包含专题16反比例函数应用解答题解析版doc、专题16反比例函数应用解答题原卷版doc等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。