苏科版七年级下册12.2 证明习题课件ppt
展开苏科版 七年级下与三角形内角和定理有关的证明12.2.3第12章 证明ACB140°答 案 呈 现习题链接CDCDB习题链接【2021·梧州】在△ABC中,∠A=20°,∠B=4∠C,则∠C等于( )A.32° B.36° C.40° D.128°A1【中考·锦州】如图,在△ABC中,∠A=30°,∠B=50°,CD平分∠ACB,则∠ADC的度数是( )A.80° B.90° C.100° D.110°2C【2021·宜宾】一块含有45°角的直角三角尺和直尺如图放置,若∠1=55°,则∠2的度数是( )A.30° B.35° C.40° D.45°3B4【中考·泰州】如图,将分别含有30°,45°角的一副三角尺重叠,使直角顶点重合,若两直角重叠形成的角为65°,则图中∠α的度数为________.140°【2021·盐城】将一副三角尺按如图方式重叠,则∠1的度数为( )A.45° B.60° C.75° D.105°5C6如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于( )A.40° B.45° C.50° D.55°C【2021·齐齐哈尔】把直尺与一块三角尺按如图方式放置,若∠1=47°,则∠2的度数为( )A.43° B.47° C.133° D.137°7D【中考·眉山】一副三角尺按如图所示方式摆放,则∠α与∠β的数量关系为( )A.∠α+∠β=180° B.∠α+∠β=225° C.∠α+∠β=270° D.∠α=∠β8B如图,将长方形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为( )A.31° B.28° C.62° D.56°9D如图,在△ABC中,AD是高,AE,BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.解:∵∠CAB=50°,∠C=60°,∴∠ABC=180°-50°-60°=70°.又∵AD是高,∴∠ADC=90°,∴∠DAC=180°-90°-∠C=30°.∵AE,BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC-∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.(1)若∠B=35°,∠E=25°,求∠BAC的度数;解:∵∠B=35°,∠E=25°,∴∠ECD=∠B+∠E=60°.∵CE平分∠ACD,∴∠ACE=∠ECD=60°,∴∠BAC=∠ACE+∠E=85°.(2)求证:∠BAC=∠B+2∠E.证明:∵CE平分∠ACD,∴∠ECD=∠ACE.∵∠BAC=∠E+∠ACE,∴∠BAC=∠E+∠ECD.∵∠ECD=∠B+∠E,∴∠BAC=∠E+∠B+∠E,∴∠BAC=2∠E+∠B.如图,在△ABC中,∠ABC的平分线交AC于点E,过点E作DF∥BC,交AB于点D,且EC平分∠BEF.(1)若∠ADE=50°,求∠BEC的度数;解:∵DF∥BC,∴∠ADE=∠ABC=50°,∠CEF=∠C.∵BE平分∠ABC,∴∠DBE=∠EBC=25°.∵EC平分∠BEF,∴∠CEF=∠BEC=∠C.又∵∠BEC+∠C+∠EBC=180°,∴∠BEC=77.5°.(2)若∠ADE=α,则∠AED=________(用含α的代数式表示).【2021·常熟市期中】已知△ABC中,AD⊥BC于点D,AE平分∠BAC,过点A作直线GH∥BC,且∠GAB=60°,∠C=40°,F在BA的延长线上.(1)求∠CAF的度数;解:∵GH∥BC,∠C=40°,∴∠HAC=∠C=40°.∵∠FAH=∠GAB=60°,∴∠CAF=∠HAC+∠FAH=100°.(2)求∠DAE的度数.解:∵∠HAC=40°,∠GAB=60°,∴∠BAC=80°.∵AE平分∠BAC,∴∠BAE=40°.∵GH∥BC,AD⊥BC,∴∠GAD=90°,∴∠BAD=90°-60°=30°,∴∠DAE=∠BAE-∠BAD=10°.
初中数学苏科版七年级下册12.2 证明教案配套课件ppt: 这是一份初中数学苏科版七年级下册12.2 证明教案配套课件ppt,共9页。PPT课件主要包含了学习目标,3写出证明过程,知识回顾,平角180°,新知探究,已知△ABC,不同点取点不同,新知归纳,新知巩固,例题讲解等内容,欢迎下载使用。
初中数学苏科版七年级下册12.2 证明习题课件ppt: 这是一份初中数学苏科版七年级下册12.2 证明习题课件ppt,共20页。
初中12.2 证明习题ppt课件: 这是一份初中12.2 证明习题ppt课件,共20页。