2021学年第八章 整式乘法综合与测试课后复习题
展开冀教版七年级数学下册第八章整式的乘法同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、下面是某同学在一次测验中的计算摘录,,,,,,其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
2、计算(3x2y)2的结果是( )
A.6x2y2 B.9x2y2 C.9x4y2 D.x4y2
3、下列计算正确的是( ).
A. B. C. D.
4、电影《攀登者》中有句台词:我们自己的山,自己要登上去,让全世界看到中国人.“地球之巅”正在人类努力和科技进步下逐渐揭开神秘面纱.2020年12月8日,中尼两国领导人共同宣布珠穆朗玛峰最新高程——8848.86米.这也意味着,15年前测量的8844.43米珠峰“身高”成为历史.则8848.86用科学记数法表示是( )
A. B. C. D.
5、下列计算中,正确的是( )
A. B.
C. D.
6、片仔癫(漳州)医药有限公司是漳州地区药品流通领域的龙头企业,截止2021年11月1日,约250300000000元市值排名福建省上市公司第四名,将该数据用科学记数法表示为( )
A.0.2503×1012 B.2.503×1011
C.25.03×1010 D.2503×108
7、若( ),则括号内应填的代数式是( )
A. B. C. D.
8、地球赤道的周长是40210000米,将40210000用科学记数法表示应为( )
A. B. C. D.
9、下列计算正确的是( ).A. B.
C. D.
10、已知,,c=(0.8)﹣1,则a,b,c的大小关系是( )
A.c>b>a B.a>c>b C.a>b>c D.c>a>b
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、计算:______.
2、已知,,,为正整数,则______.
3、用科学记数法可表示为_____.
4、根据国家统计局的数据,2021年的第一季度,我国的国内生产总值接近250000亿元,增幅达到了18.3%.数据250000用科学记数法表示为____.
5、计算:______.
三、解答题(5小题,每小题10分,共计50分)
1、计算:(﹣3a2)3+(4a3)2﹣a2•a4.
2、若2x=4y+1,27y=3x﹣1,试求x与y的值.
3、计算:(结果用幂的形式表示)3x2•x4﹣(﹣x3)2
4、计算:
(1);
(2).
5、阅读材料一:可以展开成一个有规律的多项式:
;
;
;
;
……
阅读材料二:我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.下面我们依次对展开式的各项系数进一步研究发现,当取正整数时可以单独列成表中的形式:例如,在三角形中第二行的三个数1,2,1,恰好对应展开式中的系数,
(1)结合两个材料,写出的展开式:
(2)多项式的展开式是一个_____次_____项式?并预测第三项的系数是_____;
(3)请你猜想多项式取正整数)的展开式的各项系数之和,并进行合理说明(结果用含字母的代数式表示);
(4)利用材料中的规律计算:(不用材料中的规律计算不给分).
-参考答案-
一、单选题
1、A
【解析】
【分析】
由合并同类项的定义、单项式乘法法则,单项式除法法则,幂的乘方的运算法则计算后再判定即可.
【详解】
中的两项不是同类项,不能合并,故错误;
中的两项不是同类项,不能合并,故错误;
,故正确;
,故错误;
,故错误;
当a≠3时,,错误.
综上所述,计算正确.
故选:错误.
【点睛】
本题考查了合并同类项的定义、单项式乘法法则,单项式除法法则,幂的乘方的运算法则等.同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.单项式乘(除)单项式,把它们的系数、同底数幂分别向乘(除),对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.幂的乘方,底数不变,指数相乘,即(m,n都是正整数).
2、C
【解析】
【分析】
直接利用积的乘方和幂的乘方运算法则计算得出答案.
【详解】
解:(3x2y)2=9x4y2.
故选:C.
【点睛】
此题主要考查了积的乘方和幂的乘方运算,正确掌握相关运算法则是解题关键.
3、C
【解析】
【分析】
将各式分别计算求解即可.
【详解】
解:A中,错误,故不符合要求;
B中,错误,故不符合要求;
C中,正确,故符合要求;
D中,错误,故不符合要求;
故选C.
【点睛】
本题考查了幂的乘方,同底数幂的乘法与除法,整式的加法等知识.解题的关键在于正确的运算.
4、B
【解析】
【分析】
对于一个绝对值较大的数,用科学记数法写成a×10n的形式,其中1≤|a|<10,n是比原整数位数少1的数.
【详解】
解:8848.86=,
故选B.
【点睛】
此题考查了科学记数法的表示方法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
5、B
【解析】
【分析】
根据零指数幂,负指数幂的运算法则计算各个选项后判断.
【详解】
解:A. ,故选项A计算错误,不符合题意;
B. ,故选项B计算正确,符合题意;
C. ,原式不存在,故不符合题意;
D. ,故选项D计算错误,不符合题意;
故选:B
【点睛】
本题主要考查了零指数幂,负指数幂运算.负指数为正指数的倒数;任何非0数的0次幂等于1.
6、B
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:数据250300000000用科学记数法表示为2.503×1011.
故选:B.
【点睛】
此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
7、D
【解析】
【分析】
9b2-a2 可以看作(3b)2-a2,利用平方差公式,可得出答案.
【详解】
解:∵(3b+a)(3b-a)=9b2-a2,
即(3b+a)(3b-a)=(3b)2-a2,
∴括号内应填的代数式是3b-a.
故选:D.
【点睛】
本题考查平方差公式的特征,熟记平方差公式(a+b)(a-b)=a2-b2,是解决此题的关键.
8、A
【解析】
【分析】
科学记数法的形式是: ,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数.本题小数点往左移动到4的后面,所以
【详解】
解:40210000
故选:A
【点睛】
本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.
9、B
【解析】
【分析】
分别利用合并同类项、同底数幂相除、积的乘方与幂的乘方、同底数幂相乘逐一分析即可.
【详解】
A. 不是同类项,不能合并 ,不正确,故选项A不符合题意;
B. 计算正确,故选项B符合题意;
C. ,计算不正确,故选项C不符合题意;
D.,计算不正确,故选项D不符合题意.
故选B.
【点睛】
本题考查整式的运算,掌握合并同类项、同底数幂相乘、积的乘方与幂的乘方、同底数幂相除的法则是解题的关键.
10、B
【解析】
【分析】
直接利用负整数指数幂的性质以及零指数幂的性质分别化简,进而比较大小得出答案.
【详解】
解:∵a=()﹣2,
b=()0=1,
c=(0.8)﹣1,
∴1,
∴a>c>b.
故选:B.
【点睛】
此题主要考查了负整数指数幂的性质以及零指数幂的性质,正确化简各数是解题关键.
二、填空题
1、
【点睛】
本题考查的是同底数幂的乘法与积的乘方的逆运算,掌握“幂的运算法则与其逆运算的法则”是解本题的关键.
2、
【解析】
【分析】
根据同底数幂相乘的逆运算解答.
【详解】
解:∵,,
∴,
故答案为:ab.
【点睛】
此题考查了同底数幂相乘的逆运算,熟记公式是解题的关键.
3、
【解析】
【分析】
对于一个绝对值较大的数,用科学记数法写成a×10n的形式,其中1≤|a|<10,n是比原整数位数少1的数.
【详解】
解:,
故答案为:.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值.
4、2.5×105
【解析】
【分析】
用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.
【详解】
解:250000=2.5×105.
故答案为:2.5×105.
【点睛】
此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.
5、
【解析】
【分析】
根据多项式与多项式相乘运算法则求解即可.
【详解】
解:原式,
故答案为:
【点睛】
本题考查多项式相乘的运算法则,属于基础题,计算过程中细心即可.
三、解答题
1、
【解析】
【分析】
原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果.
【详解】
解:(﹣3a2)3+(4a3)2﹣a2•a4
=
=
=
【点睛】
本题主要考查了幂的乘方与积的乘方运算,熟练掌握运算法则是解答本题的关键.
2、
【解析】
【分析】
根据幂的乘方的意义得到二元一次方程组,再进行计算即可.
【详解】
解:∵2x=4y+1,27y=3x﹣1,
∴
∴
整理得,
①+②得,
把代入①得,
∴
∴方程组的解为
【点睛】
本题主要考查了幂的乘方和解二元一次方程组,熟练掌握解题步骤是解答本题的关键.
3、2x6
【解析】
【分析】
根据同底数幂的乘法和幂的乘方计算即可.
【详解】
解:3x2•x4-(-x3)2
=3x6-x6
=2x6.
【点睛】
本题考查了同底数幂的乘法和幂的乘方,掌握法则是解题的关键.
4、 (1)20x3y2;
(2)6a8
【解析】
【分析】
(1)先算积的乘方,然后再利用单项式乘以单项式计算法则进行计算即可;
(2)先算同底数幂的乘法、积的乘方和幂的乘方,然后再合并同类项即可.
(1)
解:原式=4x2•(5xy2)=20x3y2;
(2)
解:原式=a8+a8+4a8=6a8.
【点睛】
此题主要考查了单项式乘以单项式,以及幂的乘方、积的乘方、同底数幂的乘法,关键是熟练掌握各计算法则.
5、 (1)5,10,10,5
(2),,
(3),理由见解析
(4)1
【解析】
【分析】
(1)根据材料二的规律即可得;
(2)根据归纳出规律,由此即可得;
(3)先求出的展开式的各项系数之和,再归纳出一般规律,由此即可得;
(4)参考的展开式即可得.
(1)
解:由材料二得:,
故答案为:5,10,10,5;
(2)
解:是一次二项式,的展开式是二次三项式,的展开式是三次四项式,
则多项式的展开式是次项式,
由材料二的图可知,的第三项的系数是,
的第三项的系数是,
的第三项的系数是,
的第三项的系数是,
归纳类推得:的第三项的系数是,
故答案为:,,;
(3)
解:多项式取正整数)的展开式的各项系数之和为,理由如下:
的展开式的各项系数之和是,
的展开式的各项系数之和是,
的展开式的各项系数之和是,
的展开式的各项系数之和是,
归纳类推得:多项式的展开式的各项系数之和为;
(4)
解:
.
【点睛】
本题考查了多项式的乘法,正确归纳类推出一般规律是解题关键.
2021学年第八章 整式乘法综合与测试精练: 这是一份2021学年第八章 整式乘法综合与测试精练,共17页。试卷主要包含了在下列运算中,正确的是,下列运算正确的是等内容,欢迎下载使用。
冀教版七年级下册第八章 整式乘法综合与测试课后作业题: 这是一份冀教版七年级下册第八章 整式乘法综合与测试课后作业题,共15页。试卷主要包含了下列运算正确的是,下列计算结果正确的是,已知,则的值是,下列计算正确的是,计算的结果等内容,欢迎下载使用。
冀教版七年级下册第八章 整式乘法综合与测试课时训练: 这是一份冀教版七年级下册第八章 整式乘法综合与测试课时训练,共18页。试卷主要包含了下列计算结果正确的是,下列计算正确的是等内容,欢迎下载使用。