冀教版七年级下册第八章 整式乘法综合与测试同步达标检测题
展开
这是一份冀教版七年级下册第八章 整式乘法综合与测试同步达标检测题,共16页。试卷主要包含了下列计算中,正确的是,下列计算正确的是,下列计算正确的是.A.B.,我国刑法规定,走私,已知,,则的值为等内容,欢迎下载使用。
冀教版七年级数学下册第八章整式的乘法专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、据国家卫健委数据显示,截至2022年1月4日,各地累计报告接种新冠病毒疫苗约2863560000剂( )A.2.86356×109 B.2.86356×1010C.0.286356×1010 D.0.286356×1092、福建省教育发展基金会通过腾讯公益平台发起“关爱重度残疾儿童”公益募捐活动.首轮网上公益活动募捐计划93万元资金,重点扶持原23个省级扶贫开发工作重点县,助力重度残疾儿童少年实施送教上门工作,计划惠及860名重度残疾儿童.将数据93万用科学记数法表示为( ).A. B. C. D.3、若,则的值为( )A. B.8 C. D.4、下列计算中,正确的是( )A.a2+a3=a5 B.a•a=2a C.a•3a2=3a3 D.2a3﹣a=2a25、下列计算正确的是( )A.(﹣m3n)2=m5n2 B.6a2b3c÷2ab3=3aC.3x2÷(3x﹣1)=x﹣3x2 D.(p2﹣4p)p﹣1=p﹣46、下列计算正确的是( ).A. B.C. D.7、下列计算正确的是( )A.x2+x2=x4 B.(2x2)3=6x6C.3x2÷x=3x D.(x﹣1)2=x2﹣18、我国刑法规定,走私、贩卖、运输、制造海洛因50克以上的,处15年有期徒刑、无期徒刑或死刑,并处没收财产.2007年3月16日墨西哥政府在毒贩叶真理的家中搜出2.05亿美元现金,2.05亿这个数用科学计数法表示为( )A.2.05×107 B.2.05×108 C.2.05×109 D.2.05×10109、已知,,则的值为( )A.8 B.9 C.10 D.1210、已知,则的值是( )A.7 B.8 C.9 D.10第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、为做好新冠疫情常态化防控,更好保护人民群众身体健康,上海市开展新冠疫苗接种工作.截至3月底,已累计接种新冠疫苗2600000剂次,用科学记数法可表示________________剂次2、若关于x的二次三项式是完全平方式,则k=____.3、直接写出计算结果:(1)=____;(2)____;(3)=____;(4)102×98=____.4、如图,正方形ABCD的边长为a,点E在AB边上,四边形EFGB也是正方形,它的边长为,连接AF、CF、AC.若,的面积为S,则______.5、按照知情同意自愿的原则,我国正积极引导3岁至11岁适龄无禁忌人群“应接尽接”,截至11月13日,该人群已接种新冠疫苗超过84395000剂次,则84395000用科学记数法表示为____________.三、解答题(5小题,每小题10分,共计50分)1、计算:.2、先化简,再求值:,其中,.3、化简求值,其中 ;4、计算:(1);(2).5、先化简,再求值:,其中. -参考答案-一、单选题1、A【解析】【分析】用科学记数法表示较大的数时,一般形式为,其中,为整数.【详解】解:.故选A.【点睛】本题考查了科学记数法,科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原来的数,变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数,确定与的值是解题的关键.2、A【解析】【分析】科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:93万=930000=9.3×105,故选:A.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、D【解析】【分析】根据多项式乘以多项式展开,根据多项式相等即可求得对应字母的值,进而代入代数式求解即可.【详解】解:,,,,,,解得:,,.故选:D.【点睛】本题考查了多项式乘以多项式,负整数指数幂,掌握以上知识是解题的关键.4、C【解析】【分析】根据整式的加减及幂的运算法则即可依次判断.【详解】A. a2+a3不能计算,故错误; B. a•a=a2,故错误;C. a•3a2=3a3,正确;D. 2a3﹣a=2a2不能计算,故错误;故选C.【点睛】此题主要考查幂的运算即整式的加减,解题的关键是熟知其运算法则.5、D【解析】【分析】A:根据积的乘方法则运算;B:根据单项式除法法则运算;C:不能再计算;D:先把负指数化为正指数,再根据单项式乘以多项式法则计算.【详解】解:A.原式=m6n2,故不符合题意;B.原式=3ac,故不符合题意;C.原式=3x2÷(3x﹣1),故不符合题意;D.原式=(P2﹣4P)×=P﹣4,故符合题意;故选:D.【点睛】本题主要考查整式的混合运算、负整数指数幂,掌握做题步骤一般要按照先乘方后乘除,最后加减的顺序运算,把负指数化为正指数是解题关键.6、B【解析】【分析】分别利用合并同类项、同底数幂相除、积的乘方与幂的乘方、同底数幂相乘逐一分析即可.【详解】A. 不是同类项,不能合并 ,不正确,故选项A不符合题意;B. 计算正确,故选项B符合题意;C. ,计算不正确,故选项C不符合题意;D.,计算不正确,故选项D不符合题意.故选B.【点睛】本题考查整式的运算,掌握合并同类项、同底数幂相乘、积的乘方与幂的乘方、同底数幂相除的法则是解题的关键.7、C【解析】【分析】利用合并同类项的法则,积的乘方的法则,单项式除以单项式的法则,完全平方公式对各项进行运算即可.【详解】解:A、x2+x2=2x2,故A不符合题意;B、(2x2)3=8x6,故B不符合题意;C、3x2÷x=3x,故C符合题意;D、(x-1)2=x2-2x+1,故D不符合题意;故选:C.【点睛】本题主要考查整式的混合运算,解答的关键是对相应的运算法则的掌握.8、B【解析】【分析】科学记数法的形式是: ,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数.而1亿 从而可直接得到答案.【详解】解:2.05亿 故选B【点睛】本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.特别要注意:1亿1万9、B【解析】【分析】根据逆用同底数幂的除法以及幂的乘方运算进行求解即可【详解】解:∵,,∴故选B【点睛】本题考查了逆用同底数幂的除法以及幂的乘方运算,掌握同底数幂的除法以及幂的乘方运算是解题的关键.10、C【解析】【分析】把化为,代入,整理后即可求解.【详解】解:∵,∴====,故答选:C【点睛】此题考查了代数式求值,掌握平方差公式是解答此题的关键.二、填空题1、【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:2600000=2.6×106故答案为:2.6×106.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2、﹣3或1##1或-3【解析】【分析】根据这个基础,结合安全平方公式有和、差两种形式,配齐交叉项,根据恒等变形的性质,建立等式求解即可.【详解】解:∵二次三项式是完全平方式,∴=或=,∴或,解得k=﹣3或k=1,故答案为:﹣3或1.【点睛】本题考查了完全平方公式的应用,正确理解完全平方公式有和与差两种形式是解题的关键.3、 -12 -1 ax 9996【解析】【分析】(1)先乘方,再加减即可;(2)逆用积的乘方法则进行计算;(3)运用幂的乘方法则,同底数幂的乘除法法则以及积的乘方法则计算即可;(4)运用平方差公式计算即可.【详解】解:(1)=﹣1+(﹣10)﹣1=﹣1﹣10﹣1=﹣12.故答案为:﹣12.(2)=()101×()101()101=﹣()101=﹣1.故答案为:﹣1.(3)=a2x﹣2•ax+1÷a2x﹣1=a2x﹣2+x+1﹣(2x﹣1)=ax.故答案为:ax.(4)102×98=(100+2)×(100﹣2)=100²﹣2²=9996.故答案为:9996.【点睛】本题考查了实数的运算,平方差公式,同底数幂的乘除法,幂的乘方与积的乘方,零指数幂,负整数指数幂,熟练掌握各运算法则是解题关键.4、50【解析】【分析】根据题意得:AB=BC=CD=AD=10,FG=BG=b,则CG=b+10,可得,即可求解.【详解】解:根据题意得:AB=BC=CD=AD=10,FG=BG=b,则CG=b+10,∴ .故答案为:50【点睛】本题主要考查了整式混合运算的应用,根据题意得到是解题的关键.5、8.4395×107;【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:84395000=8.4395×107,故答案为:8.4395×107;【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解决问题的关键.三、解答题1、.【解析】【分析】先计算积的乘方,再计算乘方、负整数指数幂、乘法运算即可得.【详解】解:原式.【点睛】本题考查了积的乘方、负整数指数幂等知识点,熟练掌握各运算法则是解题关键.2、,7【解析】【分析】先利用乘法公式计算括号里面的乘方,乘法,然后将括号内的式子进行去括号,合并同类项化简,再用多项式除以单项式的运算法则进行计算,最后代入求值.【详解】解:原式=,=当x=-2,y=1时,原式=2+5×1=2+5=7.【点睛】本题考查整式的混合运算—化简求值,掌握完全平方公式(a±b)2=a2±2ab+b2和平方差公式(a+b)(a-b)=a2-b2的结构是解题关键.3、,6.【解析】【分析】先利用完全平方公式和平方差公式去括号,然后合并同类项,最后代值计算即可.【详解】解: 当时,原式.【点睛】本题主要考查了整式的化简求值,解题的关键在于能够熟练掌握乘法公式.4、 (1);(2).【解析】【分析】(1)根据单项式乘以多项式运算法则计算即可得答案;(2)根据多项式乘以多项式运算法则计算即可得答案.(1)==.(2)===.【点睛】本题考查整式的乘法,单项式乘以多项式,用单项式分别乘以多项式中的每一项,再把所得的积相加;多项式乘以多项式,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加;熟练掌握运算法则是解题关键.5、5x2-4,【解析】【分析】利用多项式乘多项式以及乘法公式对原式进行化简,再代入x的值求原式的值.【详解】解:=x2+5x-x-5+4x2-4x+1=5x2-4,当时,原式=5×.【点睛】本题考查了整式的化简求值,解题的关键是掌握乘法公式的运用.
相关试卷
这是一份冀教版七年级下册第八章 整式乘法综合与测试一课一练,共18页。试卷主要包含了下列计算正确的是,下列运算正确的是,计算得,若的结果中不含项,则的值为等内容,欢迎下载使用。
这是一份数学七年级下册第八章 整式乘法综合与测试课时训练,共18页。试卷主要包含了已知,,c=,计算得,计算的结果,若的结果中不含项,则的值为等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第八章 整式乘法综合与测试习题,共14页。试卷主要包含了若的结果中不含项,则的值为,计算的结果是等内容,欢迎下载使用。