![精品试卷冀教版七年级数学下册第十章一元一次不等式和一元一次不等式组专题练习试卷(无超纲带解析)第1页](http://img-preview.51jiaoxi.com/2/3/12766343/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷冀教版七年级数学下册第十章一元一次不等式和一元一次不等式组专题练习试卷(无超纲带解析)第2页](http://img-preview.51jiaoxi.com/2/3/12766343/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷冀教版七年级数学下册第十章一元一次不等式和一元一次不等式组专题练习试卷(无超纲带解析)第3页](http://img-preview.51jiaoxi.com/2/3/12766343/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试当堂达标检测题
展开
这是一份数学七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试当堂达标检测题,共22页。试卷主要包含了不等式组的最小整数解是,现有甲,若,则下列式子一定成立的是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若a>b>0,c>d>0,则下列式子不一定成立的是( )
A.a﹣c>b﹣dB.C.ac>bcD.ac>bd
2、若a<0,则关于x的不等式|a|x>a的解集是( )
A.x>1B.x>﹣1C.x>1D.x>﹣1
3、若方程组的解满足,则k的值可能为( )
A.-1B.0C.1D.2
4、不等式组的最小整数解是( )
A.5B.0C.D.
5、如果x>y,则下列不等式正确的是( )
A.x﹣1<y﹣1B.5x<5yC.D.﹣2x>﹣2y
6、现有甲、乙两种运输车将46吨物资运往A地.甲种运输车载重5吨,乙种运输车载重4吨,每种车都不能超载.已安排甲种车5辆,要一次性完成该物资的运输,则至少安排乙种车( )辆.A.5B.6C.7D.8
7、若,则下列式子一定成立的是( )
A.B.C.D.
8、已知,那么下列各式中,不一定成立的是( )
A.B.C.D.
9、下列各式中,是一元一次不等式的是( )
A.5+4>8B.2x-1
C.2x≤5D.2x+y>7
10、把某个关于x的不等式的解集表示在数轴上如图所示,则该不等式的解集是( )
A.x≥﹣2B.x>﹣2C.xa,再根据不等式的性质解题即可.
【详解】
解:因为a<0,
所以|a|=-a,
所以|a|x>a
-ax>a
-x-1
故选:B.
【点睛】
本题考查解一元一次不等式、绝对值的性质等知识,是基础考点,掌握相关知识是解题关键.
3、D
【解析】
【分析】
将两个方程组相加得到:,再由即可求出进而求解.
【详解】
解:由题意可知:,
将①+②得到:,
∵,
∴,
解得,
故选:D.
【点睛】
本题考查二元一次方程组的解法及不等式的解法,解题关键是求出,进而求出k的取值范围.
4、C
【解析】
【分析】
分别求出各不等式的解集,再求出其公共解集,然后求出最小整数解即可.
【详解】
解:解不等式,得:,
解不等式,得:,
故不等式组的解集为:,
则该不等式组的最小整数解为:.
故选:C.
【点睛】
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
5、C
【解析】
【分析】
根据不等式的性质解答.①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.
【详解】
解:A.∵x>y,
∴x﹣1>y﹣1,故本选项不符合题意;
B.∵x>y,
∴5x>5y,故本选项不符合题意;
C.∵x>y,
∴,故本选项符合题意;
D.∵x>y,
∴﹣2x<﹣2y,故本选项不符合题意;
故选:C.
【点睛】
此题考查了不等式的性质,熟记不等式的性质并正确应用是解题的关键.
6、B
【解析】
【分析】
现用甲,乙两种运输车将46吨抗旱物资运往灾区,此题的等量关系是:甲种车运输物资数+乙种车运输物资数≥46吨.设甲种运输车至少应安排x辆,根据不等关系就可以列出不等式,求出x的值.
【详解】
解:设乙种车安排了x辆,
4x+5×5≥46
解得x≥.
因为x是正整数,所以x最小值是6.
则乙种车至少应安排6辆.
故选:B.
【点睛】
本题主要考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,理解汽车的载重量与货物的数量之间的关系是解决本题的关键.
7、B
【解析】
【分析】
根据不等式的性质依次分析判断.
【详解】
解:∵,∴a+1>b+1,故选项A不符合题意;
∵,∴,故选项B符合题意;
∵,∴-2a8中,没有未知数,
∴不是一元一次不等式,A不符合题意;
∵2x-1,没有不等号,
∴不是一元一次不等式,B不符合题意;
∵2x≤5是一元一次不等式,
∴C符合题意;
∵2x+y>7中,有两个未知数,
∴不是一元一次不等式,D不符合题意;
故选C.
【点睛】
本题考查了一元一次不等式的定义即含有一个未知数且未知数的次数是1的不等式,正确理解定义是解题的关键.
10、B
【解析】
【分析】
观察数轴上x的范围即可得到答案.
【详解】
解:观察数轴可发现表示的是从-2(空心)开始向右,故该不等式的解集是,
故选B.
【点睛】
本题主要考查对在数轴上表示不等式的解集的理解和掌握,能根据数轴上不等式的解集得出答案是解此题的关键.
二、填空题
1、①③④
【解析】
【分析】
①先求出方程组的解,把代入求出、即可;②把代入,求出的值,再根据判断即可;③求出方程组的解,再代入方程,看看方程左右两边是否相等即可;④根据和求出,求出,再求出的范围即可.
【详解】
解方程组得:,
①当时,,,
所以、互为相反数,故①正确;
②把代入得:,
解得:,
,
此时不符合,故②错误;
③当时,
,,
方程组的解是,
把,代入方程得:左边右边,
即当时,方程组的解也是方程的解,故③正确;
④,
,
即,
,
,
,
,
,故④正确;
故答案为:①③④.
【点睛】
本题考查了解二元一次方程组,二元一次方程组的解,一元一次方程的解,解不等式组等知识点,能求出方程组的解是解此题的关键.
2、-3<x≤5
【解析】
【分析】
根据长方形面积=长×宽,列出不等式组,解一元一次不等式组即可得出结论.
【详解】
解:由已知可得:,
解得:-3<x≤5.
故答案为:-3<x≤5.
【点睛】
本题考查了一元一次不等式组的应用以及长方形的面积公式,解题的关键是能熟练的解一元一次不等式组.本题属于基础题,难度不大,解决该类题型需根据题意列出正确的一元一次不等式组.
3、或或或或或或或或
【解析】
【分析】
设A,B,C三类疫苗每件的盒数分别为盒,得出甲乙接种点配备A类、B类、C类疫苗的盒数,根据甲接种点和乙接种点配备疫苗的总盒数相同,列出方程,列一元一次不等式,进而解二元一次方程,求整数解即可.
【详解】
解:设A,B,C三类疫苗每件的盒数分别为盒,则甲接种点配备A类、B类、C类疫苗的盒数分别为盒,乙接种点配备A类、B类、C类疫苗的盒数分别为,则
即①
三类疫苗每件盒数之和为95盒,且各类疫苗每件盒数均是不大于50盒的整数,C与B两类疫苗每件盒数之差大于4盒,则
,且都为整数
解得
解得
则或
即或
或
解得或
皆为整数,若,则,符合题意
或
为整数,则
时,,,
时,,,
时,,,
时,,,
时,,,
时,,,
时,,,
时,,,
时,,,
,,,,,,,,
故答案为:,,,,,,,,
【点睛】
本题考查了二元一次方程组,一元一次不等式组的应用,求得的取值范围是解题的关键.
4、
【解析】
【分析】
先根据已知等式可得,从而可得,再根据绝对值的非负性、偶次方的非负性求出的取值范围,由此即可得出答案.
【详解】
解:由得:,
则,
,
,解得,
又,
,
,
即的取值范围为,
故答案为:.
【点睛】
本题考查了绝对值的非负性、偶次方的非负性、一元一次不等式组的应用,熟练掌握绝对值和偶次方的非负性是解题关键.
5、##0.5
【解析】
【分析】
由a<0,且2|a|x≤3a,得-2ax≤3a,解得x≤,再根据x的取值范围将所求式子化简,求出式子的最小值.
【详解】
解:∵a<0,2|a|x≤3a,
∴-2ax≤3a,两边同除以-a,得2x≤-3,得x≤,
当x≤时,,
由x≤得:.
故答案为:.
【点睛】
本题考查了绝对值即一元一次不等式的运用.关键是根据已知条件解不等式求x的取值范围.
三、解答题
1、 (1)能被包含.理由见解析
(2)实数的取值范围是或
【解析】
【分析】
(1)解方程组求得方程组的解为,不等式x+1≥0的解集为x≥﹣1,2和﹣1都在D内,即可证得C能被D包含;
(2)解关于x,y的方程组得到它的解为,得到E:{a+1,a﹣l},解不等式组得它的解集为1≤x<4,根据题意得出a﹣1<1或a+1≥4,解得a<2或a≥3.
(1)
能被包含.理由如下:
解方程组得到它的解为,
,,
不等式的解集为,
,
和都在内,
能被包含;
(2)
解关于,的方程组得到它的解为,
,,
解不等式组得它的解集为,
,
不能被包含,且,
或,
或,
所以实数的取值范围是或.
【点睛】
本题考查了新定义,解二元一次方程组和一元一次不等式(组),理解被包含的定义是解题关键,属于中档题.
2、 (1)﹣1≤x<6,在数轴上表示见解析
(2)﹣1≤x<3,在数轴上表示见解析
【解析】
【分析】
(1)先根据不等式的性质求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出不等式组的解集即可;
(2)先根据不等式的性质求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出不等式组的解集即可.
(1)
解:,
解不等式①,得,
解不等式②,得,
所以不等式组的解集是,
在数轴上表示为:
;
(2)
解:,
解不等式①,得,
解不等式②,得,
所以不等式组的解集是,
在数轴上表示为:
.
【点睛】
本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,解题的关键是能根据不等式的解集找出不等式组的解集.
3、 (1)1040,1116
(2)当购买乒乓球25盒时,在两家商店花费金额一样
(3)当购买乒乓球大于25盒时,在乙商店购买划算
【解析】
【分析】
(1)甲:根据买一副球拍赠一盒乒乓球可知只要付5副球拍和1盒球的金额;乙:先算所有的,再计算9折后的金额;
(2)设有x盒乒乓球,然后将两个商店的需要的金额计算出来,再列出方程计算得到x的值;
(3)令乙商店的金额小于甲商店的金额列出不等式,然后解不等式.
【详解】
解:(1)甲:∵买一副球拍赠一盒乒乓球,
∴只需付5副球拍和1盒球的金额,
∴需花费200×5+40×1=1040(元),
乙:0.9×(200×5+40×6)=1116(元).
故答案为:1040,1116.
(2)设有x盒乒乓球,由题意得,
甲:200×5+40(x﹣5)=800+40x(元),
乙:0.9(200×5+40x)=900+36x(元),
∵在两家商店花费金额一样,
∴800+40x=900+36x,
解得:x=25,
答:当购买乒乓球25盒时,在两家商店花费金额一样.
(3)由(2)得,甲店需要(800+40x)元,乙店需要(900+36x)元,
∵在乙商店购买划算,
∴800+40x>900+36x,
解得:x>25,
答:当购买乒乓球大于25盒时,在乙商店购买划算.
【点睛】
本题考查了一元一次方程和一元一次不等式的应用,解题的关键是正确理解题意用含有x的式子表示甲乙两个商店所需金额.
4、 (1);
(2)无解.
【解析】
【分析】
(1)求出每个不等式的解集,再求两个不等式解集的公共部分即可;
(2)求出每个不等式的解集,再求两个不等式解集的公共部分即可.
(1)
解不等式①,得:
解不等式②,得:
所以不等式组的解集为:
解集在数轴上表示如下:
(2)
解不等式①,得:
解不等式②,得:
所以不等式组的解集无解
解集在数轴上表示如下:
【点睛】
本题考查了解一元一次不等式组,熟练掌握一元一次不等式的解法是解题的关键.
5、﹣2≤x<3.5,正整数解有:1、2、3
【解析】
【分析】
分别解不等式组中的两个不等式,再确定两个不等式的解集的公共部分得到不等式组的解集,再写出范围内的正整数解即可.
【详解】
解:解不等式4(x+1)≤7x+10,
得:x≥﹣2,
解不等式x﹣5,得:x<3.5,
故不等式组的解集为:﹣2≤x<3.5,
所以其正整数解有:1、2、3.
【点睛】
本题考查的是一元一次不等式组的解法,掌握“解不等式组的步骤及确定两个不等式的解集的公共部分”是解本题的关键.
相关试卷
这是一份冀教版七年级下册第八章 整式乘法综合与测试一课一练,共18页。试卷主要包含了下列计算正确的是,下列运算正确的是,计算得,若的结果中不含项,则的值为等内容,欢迎下载使用。
这是一份数学七年级下册第八章 整式乘法综合与测试课时训练,共18页。试卷主要包含了已知,,c=,计算得,计算的结果,若的结果中不含项,则的值为等内容,欢迎下载使用。
这是一份冀教版七年级下册第八章 整式乘法综合与测试同步达标检测题,共16页。试卷主要包含了下列计算中,正确的是,下列计算正确的是,下列计算正确的是.A.B.,我国刑法规定,走私,已知,,则的值为等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)