初中数学第二十章 函数综合与测试达标测试
展开
这是一份初中数学第二十章 函数综合与测试达标测试,共21页。
冀教版八年级数学下册第二十章函数课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各曲线中,不表示y是x的函数的是( )A. B.C. D.2、今年暑假期间,小东外出爬山.他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为(分钟),所走的路程为s(米),s与t 之间的函数关系如图所示.下列说法错误的是( )A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟 70米C.小明在上述过程中所走的路程为3800米D.小明休息前爬山的平均速度小于休息后爬山的平均速度3、在下列图象中,是的函数的是( )A. B.C. D.4、如图1,在矩形ABCD中,AB<BC,AC,BD交于点O.点E为线段AC上的一个动点,连接DE,BE,过E作EF⊥BD于F.设AE=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的( ).A.线段EF B.线段DE C.线段CE D.线段BE5、洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中,洗衣机内的水量(升)与浆洗一遍的时间(分)之间的关系的图象大致为( )A. B.C. D.6、如图所示,下列各曲线中表示是的函数的有()A.1个 B.2个 C.3个 D.4个7、甲、乙两辆摩托车分别从A、B两地出发相向而行,图中、分别表示两辆摩托车与A地的距离与行驶时间之间的函数关系,则下列说法:①A、B两地相距;②甲车比乙车行完全程多用了0.1小时;③甲车的速度比乙车慢;④两车出发后,经过0.3小时,两车相遇.其中正确的有( )A.4个 B.3个 C.2个 D.1个8、下面关于函数的三种表示方法叙述错误的是( )A.用图象法表示函数关系,可以直观地看出因变量如何随着自变量而变化B.用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值C.用解析式法表示函数关系,可以方便地计算函数值D.任何函数关系都可以用上述三种方法来表示9、下列函数中,自变量的取值范围选取错误的是( )A.y=2x2中,x取全体实数 B.y=中,x取x≠-1的实数C.y=中,x取x≥2的实数 D.y=中,x取x≥-3的实数10、火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )A.①②③ B.①②④ C.③④ D.①③④第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、函数的定义域是 ___.2、一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的______.3、如图1,点P从△ABC的顶点A出发,沿A﹣B﹣C匀速运动,到点C停止运动.点P运动时,线段AP的长度y与运动时间x的函数关系如图2所示,其中D为曲线部分的最低点,则△ABC的面积是___.4、已知函数,那么________.5、如图,在矩形中,动点从点出发,沿运动至点停止,设点运动的路程为,的面积为,如果关于的函数图象如图2所示,则的面积是__________.三、解答题(5小题,每小题10分,共计50分)1、求函数的自变量的取值范围.2、如图所示,小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家.如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系. 根据图象回答下列问题:(1)食堂离小明家多远?小明从家到食堂用了多少时间?(2)小明吃早餐用了多少时间?(3)食堂离图书馆多远?小明从食堂到图书馆用了多少时间?(4)小明读报用了多少时间?(5)图书馆离小明家多远?小明从图书馆回家的平均速度是多少?3、求出下列函数中自变量的取值范围(1)(2)(3)4、利用学过的的如何研究函数图象及性质的知识,研究新函数:的函数图象及性质:(1)请通过列表、描点、连线,在平面直角坐标系中画出此函数的图象;(2)由函数图象,可以得到该函数的图象性质:①自变量x的取值范围是,函数值y的取值范围是 .②函数的增减性为: .③函数 (有/无)最值;④函数的对称性为: .5、如图①,在矩形ABCD中,AB=10cm,BC=8cm,点P从A出发,沿A→B→C→D路线运动,到D停止;点Q从D出发,沿D→C→B→ A路线运动,到A停止.若点P、点Q同时出发,点P的速度为每秒lcm,点Q的速度为每秒2cm, a秒时点P、点Q同时改变速度,点P的速度变为每秒bcm,点Q的速度变为每秒lcm,图②是点P出发x秒后△APD的面积S(cm)与x(秒)的函数关系图象.(1)根据图象得a= ;b= ;(2)设点P已行的路程为y1(cm),点Q还剩的路程为y2(cm),请分别求出改变速度后,y1、y2和运动时间x(秒)的关系式,井写出自变量取值范围. -参考答案-一、单选题1、D【解析】【分析】根据函数的意义进行判断即可.【详解】解:A、图中,对于的每一个取值,都有唯一确定的值与之对应,选项不符合题意;B、图中,对于的每一个取值,都有唯一确定的值与之对应,选项不符合题意;C、图中,对于的每一个取值,都有唯一确定的值与之对应,选项不符合题意;D、图中,对于的每一个取值,可能有两个值与之对应,选项符合题意.故选:D.【点睛】本题主要考查了函数的定义,解题的关键是掌握函数的定义,在定义中特别要注意,对于的每一个值,都有唯一的值与其对应.2、D【解析】【分析】根据函数图象可知,小明40分钟爬山2800米,40~60分钟休息,60~100分钟爬山(3800−2800)米,爬山的总路程为3800米,根据路程、速度、时间之间的关系进行解答即可.【详解】解:A、小明中途休息用了60−40=20分钟,正确,不符合题意;B、小明休息前爬山的速度为2800÷40=70(米/分钟),正确,不符合题意;C、小明在上述过程中所走的路程为3800米,正确,不符合题意;D、小明休息前爬山的速度为2800÷40=70(米/分钟),小明休息后爬山的速度是(3800−2800)÷(100−60)=25(米/分钟),小明休息前爬山的平均速度大于休息后爬山的平均速度,错误,符合题意;故选:D.【点睛】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键.3、D【解析】【分析】设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.根据函数的意义即可求出答案.【详解】解:A、对于x的每一个确定的值,y可能会有两个值与其对应,不符合函数的定义,故选项A不符合题意;B、对于x的每一个确定的值,y可能会有多个值与其对应,不符合函数的定义,故选项B不符合题意;C、对于x的每一个确定的值,y可能会有两个值与其对应,不符合函数的定义,故选项C不符合题意;D、对于x的每一个确定的值,y有唯一的值与之对应,符合函数的定义,故选项D符合题意.故选:D.【点睛】本题主要考查了函数的定义.解题的关键是掌握函数的定义,在定义中特别要注意,对于x的每一个值,y都有唯一的值与其对应.4、B【解析】【分析】根据各个选项中假设的线段,可以分别由图象得到相应的y随x的变化的趋势,从而可以判断哪个选项是正确的.【详解】解:A、由图1可知,若线段EF是y,则y随x的增大先减小后增大,而由大变小的距离等于由小变大的距离,故此选项不符合题意;B、由图1可知,若线段DE是y,则y随x的增大先减小再增大,而由大变小的距离大于由小变大的距离,在点A的距离是DA,在点C时的距离是DC,DA>DC,故此选项符合题意;C、由图1可知,若线段CE是y,则y随x的增大越来越小,故此选项不符合题意;D、由图1可知,若线段BE是y,则y随x的增大先减小再增大,而由由大变小的距离小于由小变大的距离,在点A的距离是BA,在点C时的距离是BC,BA<BC,故此选项不符合题意;故选B.【点睛】本题考查动点问题的函数图象,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.5、B【解析】【分析】根据洗衣机内水量开始为0,注水后水量变多,清洗时水量不变,排水时水量变小,直到水量变为0;由此即可得到答案.【详解】解:解:因为洗衣机工作前洗衣机内无水,所以A,C两选项不正确,被淘汰;又因为洗衣机最后排完水,所以D选项不正确,被淘汰,所以选项B正确.故选:B.【点睛】本题考查了对函数图象的理解能力.解题关键是看函数图象要理解两个变量的变化情况.6、C【解析】【分析】由题意依据函数的定义对各个函数图形进行分析判断即可得出答案.【详解】解:由对于的每一个确定的值,都有唯一确定的值与其对应可知,①、②、③表示是的函数,④不构成函数关系,共有3个.故选:C.【点睛】本题考查函数的识别,注意掌握在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数.7、B【解析】【分析】根据从B到A共行驶的路程可判断①;求出乙车行驶时间,甲车行驶时间,根据减法求出时间差可判断②;根据时间与路程,求出甲乙两车的速度,根据减法求出速度差可判断③;设两相遇时间为th.甲车行驶40tkm,乙车行驶48tkm,根据甲乙共走全程列方程,求出时间t可判断④.【详解】解:乙从B地到A共行走24km,故①A、B两地相距正确; 乙摩托车从B到A地用0.5h,甲摩托车从A地到B地用0.6h,∴0.6-0.5=0.1h,故②甲车比乙车行完全程多用了0.1小时正确;甲摩托车行驶的速度为24÷0.6=40km/h,乙摩托车行驶的速度为24÷0.4=48km/h,∴48-40=8km/h,故③甲车的速度比乙车慢正确;设两车相遇时间为th.甲车行驶40tkm,乙车行驶48tkm,∴40t+48t=24,解得h,故④两车出发后,经过0.3小时,两车相遇不正确.故选择B.【点睛】本题考查从行程图像获取信息和处理信息,看懂函数图像,列一元一次方程,时间差,速度差,掌握相关知识是解题关键.8、D【解析】【分析】根据函数三种表示方法的特点即可作出判断.【详解】前三个选项的叙述均正确,只有选项D的叙述是错误的,例如一天中的气温随时间的变化是一个函数关系,但此函数关系是无法用函数解析式表示的. 故选:D【点睛】本题考查了函数的三种表示方法,知道三种表示方法的特点是本题的关键.9、D【解析】【分析】根据分式的分母不能为0、二次根式的被开方数的非负性即可得.【详解】解:A、中,取全体实数,此项正确;B、,即,中,取的实数,此项正确;C、,,中,取的实数,此项正确;D、,且,,中,取的实数,此项错误;故选:D.【点睛】本题考查了函数自变量、分式和二次根式,熟练掌握分式和二次根式有意义的条件是解题关键.10、D【解析】【分析】根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.【详解】解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确;火车的长度是150米,故②错误;整个火车都在隧道内的时间是:45-5-5=35秒,故③正确;隧道长是:45×30-150=1200(米),故④正确.故选:D.【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.二、填空题1、【解析】【分析】根据分式有意义的条件是分母不为0,即可求解.【详解】解:由题意得:x-2≠0,即 .故答案为 .【点睛】本题考查了使函数有意义的自变量的取值范围的确定.函数是整式型,自变量去全体实数;函数是分式型,自变量是使分母不为0 的实数;根式型的函数的自变量去根号下的式子大于或等于0的实数;当函数关系式表示实际问题时,自变量不仅要使函数关系式有意义,还要使实际问题有意义 .2、图象【解析】略3、48【解析】【分析】根据图象可知点P在AB上运动时,此时AP不断增大,而从B向C运动时,AP先变小后变大,从而可求出BC与BC上的高.【详解】解:根据图象可知,点P在AB上运动时,此时AP不断增大,由图象可知:点P从A向B运动时,AP的最大值为10,即AB=10,点P从B向C运动时,AP的最小值为8,即BC边上的高为8,∴当AP⊥BC,AP=8,此时,由勾股定理可知:BP=6,由于图象的曲线部分是轴对称图形,∴PC=6,∴BC=12,∴△ABC的面积为:×8×12=48,故答案为48.【点睛】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AB的长度.4、-1【解析】【分析】把x=-1代入函数即可求解.【详解】∵∴故答案为:-1.【点睛】此题主要考查函数值求解,解题的关键是把自变量的值代入函数解析式.5、10【解析】【分析】根据函数的图象、结合图形求出AB、BC的值,根据三角形的面积公式得出△ABC的面积.【详解】解:∵动点P从点B出发,沿BC、CD、DA运动至点A停止,而当点P运动到点C,D之间时,△ABP的面积不变,函数图象上横轴表示点P运动的路程,x=4时,y开始不变,说明BC=4,x=9时,接着变化,说明CD=9-4=5,∴AB=5,BC=4,∴△ABC的面积是:×4×5=10.故答案为:10.【点睛】本题主要考查了动点问题的函数图象,在解题时要能根据函数的图象求出有关的线段的长度,从而得出三角形的面积是本题的关键.三、解答题1、或.【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于等于0且分母不为0,即可得出自变量的取值范围.【详解】解:要使函数有意义,则, 即①或②,解不等式组①得,解不等式组②得∴自变量取值是或.【点睛】本题考查函数自变量的取值范围,当函数表达式是分式时,必须满足分母不为0,若函数表达式中有二次根式,则也要满足被开方数大于等于0.2、(1),;(2);(3),;(4);(5),【解析】【分析】小明离家的距离y是时间x的函数,由图象中有两段平行于x轴的线段可知,小明离家后有两段时间先后停留在食堂与图书馆里,由此结合图形分析即可解答.【详解】解:(1)由纵坐标看出,食堂离小明家;由横坐标看出,小明从家到食堂用了.(2)由横坐标看出,,小明吃早餐用了.(3)由纵坐标看出,,食堂离图书馆;由横坐标看出,,小明从食堂到图书馆用了.(4)由横坐标看出,,小明读报用了.(5)由纵坐标看出,图书馆离小明家;由横坐标看出,,小明从图书馆回家用了,由此算出平均速度是.【点睛】本题考查的是函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合题意正确计算是解题的关键.3、(1)且;(2)且;(3)【解析】【分析】(1)根据分式有意义的条件和零指数幂底数不为0进行求解即可;(2)根据分式有意义的条件和二次根式有意义的条件进行求解即可;(3)根据二次根式有意义的条件进行求解即可.【详解】解:(1)要使有意义,需,解得且;(2)要使有意义,需,解得且;(3)要使有意义,需,解得.【点睛】本题主要考查了分式有意义的条件,二次根式有意义的条件,零指数幂底数不为0,解题的关键在于能够熟练掌握相关知识进行求解.4、 (1)见解析(2)①x≠0,y≠0;②在各自的象限内,y随x的增大而减小;③无;④关于原点中心对称,关于直线成轴对称【解析】【分析】(1)列出若干组x,y的值,列出表格,在坐标系中描点,再用平滑的曲线连接即可;(2)根据图象直接得出结论.(1)解:列表x…-3-2-1123…y…-11… 描点、画图:(2)由图象可得:①自变量x的取值范围是x≠0,函数值y的取值范围是y≠0.②函数的增减性为:在各自的象限内,y随x的增大而减小.③函数无最值;④函数的对称性为:关于原点中心对称,关于直线成轴对称.【点睛】本题考查了画函数图象,函数的性质,属于基础知识,要能准确画出函数图象,从中得到函数性质,是一种基本的研究函数的方法.5、(1)a=6;b=2;(2)y1=2x-6(6≤x≤17),y2=22-x(6≤x≤22)【解析】【分析】(1)先判断出P改变速度时是在AB上运动,由此即可求出改变速度的时间和位置,从而求出a,再根据在第8秒P的面积判断出此时P运动到B点,即可求出b;(2)根据P和Q的总路程都是CD+BC+AB=28cm,然后根据题意进行求解即可.【详解】解:(1)∵当P在线段AB上运动时,,∴当P在线段AB上运动时,△APD的面积一直增大,∵四边形ABCD是矩形,∴AD=BC=10cm,∴当P在线段AB上运动时,△APD的面积的最大值即为P运动到B点时,此时,由函数图像可知,当P改变速度时,此时P还在AB上运动,∴,即,解得,∴,∴又由函数图像可知当P改变速度之后,在第8秒面积达到40cm2,即此时P到底B点∴,∴,故答案为:6,2;(2)由(1)得再第6秒开始改变速度,∴改变速度时,P行走的路程为6cm,Q行走的路程为12cm,∵Q和P的总路程都为CD+BC+AB=28cm,∴,【点睛】本题主要考查了从函数图像上获取信息,解题的关键在于能够准确根据函数图像判断出P点在改变速度时是在AB上运动.
相关试卷
这是一份冀教版八年级下册第二十章 函数综合与测试综合训练题,共24页。试卷主要包含了当时,函数的值是等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十章 函数综合与测试课堂检测,共22页。试卷主要包含了函数的自变量x的取值范围是等内容,欢迎下载使用。
这是一份2020-2021学年第二十章 函数综合与测试精练,共21页。试卷主要包含了小明家,函数y=的自变量x的取值范围是等内容,欢迎下载使用。