数学八年级下册第二十一章 一次函数综合与测试课时训练
展开八年级数学下册第二十一章一次函数章节测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列各点中,不在一次函数的图象上的是( )
A. B.
C. D.
2、若点(-3,y1)、(2,y2)都在函数y=-4x+b的图像上,则y1与y2的大小关系( )
A.y1>y2 B.y1<y2 C.y1=y2 D.无法确定
3、点和点都在直线上,则与的大小关系为( )
A. B. C. D.
4、一次函数y=mx﹣n(m,n为常数)的图象如图所示,则不等式mx﹣n≥0的解集是( )
A.x≥2 B.x≤2 C.x≥3 D.x≤3
5、一次函数的大致图象是( )
A. B.
C. D.
6、甲、乙两人在笔直的公路上同起点、同终点、同方向匀速步行1200米,先到终点的人原地休息、已知甲先出发3分钟,在整个步行过程中,甲、乙两人之间的距离y(米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①乙用6分钟追上甲;②乙步行的速度为60米/分;③乙到达终点时,甲离终点还有400米;④整个过程中,甲乙两人相聚180米有2个时刻,分别是t=18和t=24.其中正确的结论有( )
A.①② B.①③ C.②④ D.①②④
7、如图,甲乙两人沿同一直线同时出发去往B地,甲到达B地后立即以原速沿原路返回,乙到达B地后停止运动,已知运动过程中两人到B地的距离y(km)与出发时间t(h)的关系如图所示,下列说法错误的是( )
A.甲的速度是16km/h
B.出发时乙在甲前方20km
C.甲乙两人在出发后2小时第一次相遇
D.甲到达B地时两人相距50km
8、已知点和点是一次函数图象上的两点,若,则下列关于的值说法正确的是( )
A.一定为正数 B.一定为负数 C.一定为0 D.以上都有可能
9、若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的( )
A. B. C. D.
10、把函数y=x的图象向上平移2个单位,下列各点在平移后的函数图象上的是( )
A.(2,2) B.(2,3) C.(2,4) D.(2,5)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一次函数y=(k﹣1)x+3中,函数值y随x的增大而减小,则k的取值范围是_____.
2、如图,直线与的交点的横坐标为2,则不等式的自变量的取值范围是________.
3、根据如图所示的程序计算函数值,若输入x的值为,则输出的y值为_.
4、一次函数y=﹣2x+7的图象不经过第 _____象限.
5、当k>0时,直线y=kx经过第一、第三象限,从左向右______,即随着x的增大y也增大;当k<0时,直线y=kx经过第二、第四象限,从左向右______,即随着x的增大y反而减小.
三、解答题(5小题,每小题10分,共计50分)
1、为了做好防疫工作,学校准备购进一批消毒液.已知A型消毒液7元/瓶,B型消毒液9元/瓶.学校准备购进这两种消毒液共90瓶.
(1)写出购买所需总费用w元与A瓶个数x之间的函数表达式;
(2)若B型消毒液的数量不少于A型消毒液数量的,请设计最省钱的购买方案,并求出最少费用.
2、经开区某中学计划举行一次知识竞赛,并对获奖的同学给予奖励.现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.
(1)求甲、乙两种奖品的单价;
(2)根据颁奖计划,该中学需甲、乙两种奖品共60件,且甲种奖品不少于乙种奖品的一半,应如何购买才能使总费用最少?并求出最少费用.
3、某单位要制作一批宣传材料,甲公司提出:每份材料收费25元,另收2000元的设计费;乙公司提出:每份材料收费35元,不收设计费.
(1)请用含x代数式分别表示甲乙两家公司制作宣传材料的费用;
(2)试比较哪家公司更优惠?说明理由.
4、如图1,一个正立方体铁块放置在圆柱形水槽内,水槽的底面圆的面积记为,正立方体的底面正方形的面积记为.现以一定的速度往水槽中注水,28秒时注满水槽.此时停止注水,并立刻将立方体铁块用细线竖直匀速上拉直至全部拉出水面.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图2所示.
(1)正立方体的棱长为______cm,______;
(2)当圆柱形水槽内水面高度为12cm时,求注水时间是几秒?
(3)铁块完全拉出时,水面高度为______cm.
5、直线,与直线相交于点.
(1)求直线的解析式;
(2)横、纵坐标都是整数的点叫做整点.记直线与直线和轴围成的区域内(不含边界)为.
①当时,直接写出区域内的整点个数;
②若区域内的整点恰好为2个,结合函数图象,求的取值范围.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据一次函数解析变形可得,进而判断即可.
【详解】
解:∵
∴
A. ,,则在一次函数的图象上 ,不符合题意;
B. ,,则不在一次函数的图象上,符合题意;
C. ,,则在一次函数的图象上 ,不符合题意;
D. ,,,则在一次函数的图象上 ,不符合题意;
故选B
【点睛】
本题考查了一次函数的性质,满足一次函数解析式的点都在一次函数图象上,掌握一次函数的性质是解题的关键.
2、A
【解析】
【分析】
根据一次函数的性质得出y随x的增大而减小,进而求解.
【详解】
由一次函数y=-4x+b可知,k=-4<0,y随x的增大而减小,
∵-3<2,
∴y1>y2,
故选:A.
【点睛】
本题考查一次函数的性质,熟知一次函数y=kx+b(k≠0),当k<0时,y随x的增大而减小是解题的关键.
3、B
【解析】
【分析】
根据 ,可得 随 的增大而减小,即可求解.
【详解】
解:∵ ,
∴ 随 的增大而减小,
∵ ,
∴ .
故选:B
【点睛】
本题主要考查了一次函数的性质,熟练掌握对于一次函数 ,当 时, 随 的增大而增大,当 时, 随 的增大而减小是解题的关键.
4、D
【解析】
【分析】
观察直线位于x轴及x轴上方的图象所对应的自变量的值即可完成解答.
【详解】
由图象知:不等式的解集为x≤3
故选:D
【点睛】
本题考查了一次函数与一元一次不等式的关系,数形结合是解答本题的关键.
5、A
【解析】
【分析】
由知直线必过,据此求解可得.
【详解】
解:,
当时,,
则直线必过,
如图满足条件的大致图象是:
故选:A.
【点睛】
本题主要考查一次函数的图象,解题的关键是掌握一次函数的图象性质:①当,时,图象过一、二、三象限;②当,时,图象过一、三、四象限;③当,时,图象过一、二、四象限;④当,时,图象过二、三、四象限.
6、A
【解析】
【分析】
根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.
【详解】
解:由题意可得:甲步行的速度为(米分);
由图可得,甲出发9分钟时,乙追上甲,故乙用6分钟追上甲,
故①结论正确;
∴乙步行的速度为米/分,
故②结论正确;
乙走完全程的时间(分),
乙到达终点时,甲离终点距离是:(米),
故③结论错误;
设9分到23分钟这个时刻的函数关系式为,则把点代入得:
,解得:,
∴,
设23分钟到30分钟这个时间的函数解析式为,把点代入得:
,解得:,
∴,
把分别代入可得:或,
故④错误;
故正确的结论有①②.
故选:A.
【点睛】
本题主要考查一次函数的应用,解题的关键是从图象中找准等量关系.
7、D
【解析】
【分析】
由图可知甲10小时所走路程是160km,即得甲的速度是16km/h,可判定A;根据出发时甲距B地80千米,乙距B地60千米,可判断B;由图得乙的速度是6km/h,即可得甲2小时比乙多走20km,可判断C;甲5小时达到B地可求此时乙所走路程为30km,即得甲到达B地时两人相距30km,可判断D.
【详解】
解:由图可知:甲10小时所走路程是80×2=160(km),
∴甲的速度是16km/h,故A正确,不符合题意;
∵出发时甲距B地80千米,乙距B地60千米,
∴发时乙在甲前方20km,故B正确,不符合题意;
由图可得乙的速度是60÷10=6(km/h),
∴出发2小时,乙所走路程是6×2=12(km),甲所走路程为16×2=32(km),
即甲2小时比乙多走20km,
∴甲乙两人在出发后2小时第一次相遇,故C正确,不符合题意;
∵甲5小时达到B地,此时乙所走路程为5×6=30(km),
∴甲到达B地时两人相距60-30=30(km),故D不正确,符合题意;
故选:D.
【点睛】
本题考查一次函数的应用,解题的关键是理解图象中特殊点的意义.
8、A
【解析】
【分析】
由 可得一次函数的性质为随的增大而增大,从而可得答案.
【详解】
解:点和点是一次函数图象上的两点,,
随的增大而增大,
即一定为正数,
故选A
【点睛】
本题考查的是一次函数的增减性的应用,掌握“一次函数,随的增大而增大, 则”是解本题的关键.
9、B
【解析】
【分析】
根据直线y=kx+b经过一、二、四象限,可得k<0,b>0,从而得到直线y=bx﹣k过一、二、三象限,即可求解.
【详解】
解:∵直线y=kx+b经过一、二、四象限,
∴k<0,b>0,
∴﹣k>0,
∴直线y=bx﹣k过一、二、三象限,
∴选项B中图象符合题意.
故选:B
【点睛】
本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.
10、C
【解析】
【分析】
由函数“上加下减”的原则解题.
【详解】
解:由“上加下减”的原则可知,将直线y=x的图象向上平移2个单位所得直线的解析式为:y=x+2,
当x=2时,y=2+2=4,
所以在平移后的函数图象上的是(2,4),
故选:C.
【点睛】
本题考查函数图象的平移,一次函数图象的性质等知识,是基础考点,掌握相关知识是解题关键.
二、填空题
1、k<1
【解析】
【分析】
利用一次函数图象与系数的关系列出关于m的不等式k-1<0,然后解不等式即可.
【详解】
解:∵一次函数y=(k-1)x+3中,y随x的增大而减小,
∴k-1<0,
解得k<1;
故答案为:k<1.
【点睛】
本题主要考查一次函数图象与系数的关系.解答本题注意理解:k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.
2、
【解析】
【分析】
利用函数图象得出直线y=k1x+b1在直线y=k2x+b2上方和交点的x的取值范围,即得出结论.
【详解】
解:∵直线y1=k1x+b1在直线y2=k2x+b2在同一平面直角坐标系中的交点C的横坐标为2,
∴x≥2时,直线y1=k1x+b1与直线y2=k2x+b2在上方交于同一点,
故答案为x≥2.
【点睛】
本题考查了一次函数与一元一次不等式,根据函数图象在上方的函数值比函数图象在下方的函数值大,利用数形结合求解是解题的关键.
3、##
【解析】
【分析】
根据x的值选择相应的函数关系式求解函数值即可解答.
【详解】
解:∵x=,
∴1<x<2,
∴y=-x+2=-+2=,
即输出的y值为,
故答案为:.
【点睛】
本题考查求一次函数的函数值,明确每段函数的自变量取值范围是解答的关键.
4、三
【解析】
【分析】
先根据一次函数y=﹣2x+7判断出k、b的符号,再根据一次函数的性质进行解答即可.
【详解】
解:∵一次函数y=﹣2x+7中,k=﹣2<0,b=7>0,
∴此函数的图象经过第一、二、四象限,
∴此函数的图象不经过第三象限.
故答案为:三.
【点睛】
本题考查了一次函数图象与系数的关系:对于y=kx+b(k为常数,k≠0),当k>0,b>0,y=kx+b的图象在一、二、三象限;当k>0,b<0,y=kx+b的图象在一、三、四象限;当k<0,b>0,y=kx+b的图象在一、二、四象限;当k<0,b<0,y=kx+b的图象在二、三、四象限.
5、 上升 下降
【解析】
略
三、解答题
1、 (1)w=-2x+810
(2)最省钱的购买方案是购进A型消毒液67瓶,购进B型消毒液23瓶,最低费用为676元
【解析】
【分析】
(1)A瓶个数为x,则B瓶个数为(90-x),根据题意列式计算即可;
(2)根据B型消毒液的数量不少于A型消毒液数量的,可以得到A型消毒液数量的取值范围,再根据一次函数的性质,即可求得最省钱的购买方案,计算出最少费用.
(1)
解:A瓶个数为x,则B瓶个数为(90-x),
依题意可得:w=7x+9(90-x)=-2x+810;
(2)
解:∵B型消毒液的数量不少于A型消毒液数量的,
∴,解得,
由(1)知w=﹣2x+810,
∴w随x的增大而减小,
∴当x=67时,w取得最小值,
此时w=﹣2×67+810=676,90﹣x=23,
答:最省钱的购买方案是购进A型消毒液67瓶,购进B型消毒液23瓶,最低费用为676元.
【点睛】
本题考查了一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是列出相应的方程组和列出相应的函数关系式,利用一次函数的性质和不等式的性质解答.
2、 (1)甲种奖品的单价为20元/件,乙种奖品的单价为10元/件;
(2)当学习购买20件甲种奖品、40件乙种奖品时,总费用最少,最少费用是800元.
【解析】
【分析】
(1)设甲种奖品的单价为x元/件,乙种奖品的单价为y元/件,根据“购买1件甲种奖品和2件乙种奖品共需40元,购买2件甲种奖品和3件乙种奖品共需70元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设购买甲种奖品m件,则购买乙种奖品(60-m)件,设购买两种奖品的总费用为w,由甲种奖品的数量不少于乙种奖品数量的一半,可得出关于m的一元一次不等式,解之可得出m的取值范围,再由总价=单价×数量,可得出w关于m的函数关系式,利用一次函数的性质即可解决最值问题.
(1)
设甲种奖品的单价为x元/件,乙种奖品的单价为y元/件,
依题意,得:,
解得,
答:甲种奖品的单价为20元/件,乙种奖品的单价为10元/件.
(2)
设购买甲种奖品m件,则购买乙种奖品(60-m)件,设购买两种奖品的总费用为w元,
∵甲种奖品的数量不少于乙种奖品数量的一半,
∴m≥(60-m),
∴m≥20.
依题意,得:w=20m+10(60-m)=10m+600,
∵10>0,
∴w随m值的增大而增大,
∴当学校购买20件甲种奖品、40件乙种奖品时,总费用最少,最少费用是800元.
【点睛】
本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于m的一次函数关系式.
3、 (1)y甲=25x+2 000;y乙=35x
(2)当0<x<200时,选择乙公司更优惠;当x=200时,选择两公司费用一样多;当x>200时,选择甲公司更优惠.理由见解析
【解析】
【分析】
(1)设甲公司制作宣传材料的费用为y甲(元),乙公司制作宣传材料的费用为y乙(元),份数乘以单价加上设计费可得甲公司的费用;份数乘以单价可得乙公司的费用;
(2)分三种情况讨论,当y甲>y乙时,当y甲=y乙时,当y甲<y乙时,分别计算可得
(1)
解:设甲公司制作宣传材料的费用为y甲(元),乙公司制作宣传材料的费用为y乙(元),制作宣传材料的份数为x(份),
依题意得y甲=25x+2 000;y乙=35x;
(2)
解:当y甲>y乙时,即25x+2 000>35x,
解得:x<200;
当y甲=y乙时,即25x+2 000=35x,
解得:x=200;
当y甲<y乙时,即25x+2 000<35x,
解得:x>200.
∴当0<x<200时,选择乙公司更优惠;
当x=200时,选择两公司费用一样多;
当x>200时,选择甲公司更优惠.
【点睛】
此题考查了一元一次方程的方案选择问题,一元一次不等式类的方案选择问题,列代数式,正确理解题意是解题的关键.
4、 (1)10,4
(2)15.2秒
(3)17.5
【解析】
【分析】
(1)由 12秒和20秒水槽内水面的高度可求正立方体的棱长;设注水的速度为xcm3/s,圆柱的底面积为scm2,得到关于x、s的二元一次方程组,可得到水槽的底面面积,即可求解;
(2)根据A(12、10)、B(28、20)求出线段AB的解析式,把y=12代入解析式,即可求解;
(3)根据水槽内水面的高度下降得体积为正立方体的体积,求出水槽内水面的高度下降,即可得答案.
(1)
解:由图2得:
∵12秒时,水槽内水面的高度为10cm,12秒后水槽内高度变化趋势改变,
∴正立方体的棱长为10cm;
由图2可知,圆柱体一半注满水需要28-12=16 (秒),故如果将正方体铁块取出,又经过16-12=4 (秒)恰好将水槽注满,正方体的体积是103=1000cm3,
设注水的速度为xcm3/s,圆柱的底面积为scm2,根据题意得:
,
解得:
∴水槽的底面面积为400cm2,
∵正立方体的棱长为10cm,
∴正立方体的底面正方形的面积=10×10=100 cm2,
∴S1:S2=400:100=4:1
(2)
设线段AB的解析式为y=kx+b(k≠0),将A(12、10)、B(28、20)代入得:,
解得:
∴y=x+,
当y=12时,x+b=12,
解得:x=15.2,
∴注水时间是15.2秒;
(3)
∵正立方体的铁块全部拉出水面,水槽内水面的高度下降,
设正立方体的铁块全部拉出水面,水槽内水面的高度下降acm,根据题意得:400a=1000,a=2.5,所以铁块完全拉出时,水面高度为20-2.5=17.5cm.
【点睛】
本题考查了正立方体的体积、圆柱的体积、一次函数的应用,做题的关键是利用函数的图象获取正确信息是解题的关键.
5、 (1)直线为;
(2)①当时,整点个数为1个,为;②的取值范围为或
【解析】
【分析】
(1)根据待定系数法求得即可;
(2)①当k=1时代入点A坐标即可求出直线解析式,进而分析出整点个数;
②当k<0时分别以(1,2),(2,1);(1,2),(3,1)为边界点代入确定k的值;当k>0时分别以(1,2),(−1,1);(1,2),(−2,1)为边界点代入确定k的值,根据图形即可求得k的取值范围.
(1)
解:直线过点.
,
直线为.
(2)
解:①当时,,把代入得,
解得:,
,
如图1,
区域内的整点个数为1个,为.
②如图2,若,
当直线过,时,.
当直线过,时,.
,
如图3,若,
当直线过,时,.
当直线过,时,.
.
综上,若区域内的整点恰好为2个,的取值范围为或.
【点睛】
此题主要考查待定系数法求一次函数的解析式,会运用边界点分析问题是解题的关键.
数学八年级下册第二十一章 一次函数综合与测试课时练习: 这是一份数学八年级下册第二十一章 一次函数综合与测试课时练习,共24页。试卷主要包含了点A,一次函数的大致图象是等内容,欢迎下载使用。
数学第二十一章 一次函数综合与测试随堂练习题: 这是一份数学第二十一章 一次函数综合与测试随堂练习题,共23页。试卷主要包含了若一次函数的图像经过第一等内容,欢迎下载使用。
初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步练习题: 这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步练习题,共25页。试卷主要包含了如图,已知点K为直线l,已知一次函数y=kx+b,一次函数的大致图象是等内容,欢迎下载使用。