初中数学冀教版八年级下册第二十一章 一次函数综合与测试课堂检测
展开八年级数学下册第二十一章一次函数专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、关于一次函数 ,下列说法不正确的是( )
A.图象经过点(2,0) B.图象经过第三象限
C.函数y随自变量x的增大而减小 D.当x≥2时,y≤0
2、已知点,在一次函数的图像上,则m与n的大小关系是( )
A. B. C. D.无法确定
3、把函数y=x的图象向上平移2个单位,下列各点在平移后的函数图象上的是( )
A.(2,2) B.(2,3) C.(2,4) D.(2,5)
4、如图,在平面直角坐标系中,,,,点D在线段BA上,点E在线段BA的延长线上,并且满足,M为线段AC上一点,当点D、M、E构成以M为直角顶点的等腰直角三角形时,M点坐标为( )
A. B. C. D.
5、关于一次函数,下列结论不正确的是( )
A.图象与直线平行
B.图象与轴的交点坐标是
C.随自变量的增大而减小
D.图象经过第二、三、四象限
6、如图所示,直线分别与轴、轴交于点、,以线段为边,在第二象限内作等腰直角,,则过、两点直线的解析式为( )
A. B. C. D.
7、一次函数y1=kx+b与y2=mx+n的部分自变量和对应函数值如表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y1 | … | 1 | 2 | 3 | 4 | 5 | … |
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y2 | … | 5 | 2 | ﹣1 | ﹣4 | ﹣7 | … |
则关于x的不等式kx+b>mx+n的解集是( )
A.x>0 B.x<0 C.x<﹣1 D.x>﹣1
8、巴中某快递公司每天上午7:00﹣8:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,下列说法正确的个数为( )
①15分钟后,甲仓库内快件数量为180件;
②乙仓库每分钟派送快件数量为8件;
③8:00时,甲仓库内快件数为400件;
④7:20时,两仓库快递件数相同.
A.1个 B.2个 C.3个 D.4个
9、关于一次函数的图像与性质,下列说法中正确的是( )
A.y随x的增大而增大;
B.当 m=3时,该图像与函数的图像是两条平行线;
C.不论m取何值,图像都经过点(2,2) ;
D.不论m取何值,图像都经过第四象限.
10、下列语句是真命题的是( ).A.内错角相等
B.若,则
C.直角三角形中,两锐角和的函数关系是一次函数
D.在中,,那么为直角三角形
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、解决含有多个变量的问题时,可以分析这些变量之间的关系,从中选取一个取值能影响其他变量的值的变量作为_______,然后根据问题的条件寻求可以反映实际问题的函数,以此作为解决问题的数学模型.
2、已知一次函数的图象经过第一、二、四象限,写出一个满足条件的一次函数的表达式 ___.
3、如果点A(﹣1,3)、B(5,n)在同一个正比例函数的图像上,那么n=___.
4、一次函数y=kx+b(k≠0)的图象是_______.
5、已知直线y=kx+b(k≠0)的图像与直线y=-2x平行,且经过点(2,3),则该直线的函数表达式为______________________.
三、解答题(5小题,每小题10分,共计50分)
1、甲、乙两人沿同一直道从A地去B地.已知A,B两地相距9000m,甲的步行速度为100m/min,他每走半个小时就休息15min,经过2小时到达目的地.乙的步行速度始终不变,他在途中不休息,在整个行程中,甲离A地的距离(单位:m)与时间x(单位:min)之间的函数关系如图所示(甲、乙同时出发,且同时到达目的地).
(1)在图中画出乙离A地的距离(单位:m)与时间x之间的函数图象;
(2)求甲、乙两人在途中相遇的时间.
2、国庆期间,小龚自驾游去了离家156千米的月亮湾,如图是小龚离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.
(1)求小龚出发36分钟时,离家的距离;
(2)求出AB段的图象的函数解析式;
(3)若小龚离目的地还有72千米,求小龚行驶了多少小时.
3、平面直角坐标系中,已知直线l1经过原点与点P(m,2m),直线l2:y=mx+2m﹣3(m≠0).
(1)求证:点(﹣2,﹣3)在直线l2上;
(2)当m=2时,请判断直线l1与l2是否相交?
4、甲、乙两人相约周末登山,甲、乙两人距地面的高度(米)与登山时间(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
(1)______米;
(2)求出甲距地面的高度与登山时间的关系式,并指出一次项系数的实际意义;
(3)若乙提速后,乙登山上升速度是甲登山上升速度的3倍,则在整个爬山过程中,登山多长时间时,甲乙两人距离地面的高度差为70米?
5、在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过点A(﹣1,1),B(0,3).
(1)求这个一次函数的解析式;
(2)若这个一次函数的图象与x轴的交点为C,求△BOC的面积.
-参考答案-
一、单选题
1、B
【解析】
【分析】
当 时, ,可得图象经过点(2,0);再由 ,可得图象经过第一、二、四象限;函数y随自变量x的增大而减小;然后根据 时, ,可得当x≥2时,y≤0,即可求解.
【详解】
解:当 时, ,
∴图象经过点(2,0),故A正确,不符合题意;
∵ ,
∴图象经过第一、二、四象限,故B错误,符合题意;
∴函数y随自变量x的增大而减小,故C正确,不符合题意;
当 时, ,
∴当x≥2时,y≤0,故D正确,不符合题意;
故选:B
【点睛】
本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.
2、A
【解析】
【分析】
根据一次函数的性质,y随x增大而减小判断即可.
【详解】
解:知点,在一次函数的图像上,
∵-2<0,
∴y随x增大而减小,
∵,
∴,
故选:A.
【点睛】
本题考查了一次函数的增减性,解题关键是明确一次函数y随x增大而减小的性质.
3、C
【解析】
【分析】
由函数“上加下减”的原则解题.
【详解】
解:由“上加下减”的原则可知,将直线y=x的图象向上平移2个单位所得直线的解析式为:y=x+2,
当x=2时,y=2+2=4,
所以在平移后的函数图象上的是(2,4),
故选:C.
【点睛】
本题考查函数图象的平移,一次函数图象的性质等知识,是基础考点,掌握相关知识是解题关键.
4、A
【解析】
【分析】
过点M作y轴的平行线,过点E、D分别作这条直线的垂线,垂足分别为F、G,求出直线AB、AC的解析式,设出点D、E、M的坐标,根据△DGM≌△MFE,建立方程求解即可.
【详解】
解:过点M作y轴的平行线,过点E、D分别作这条直线的垂线,垂足分别为F、G,
设直线AB的解析式为,把,代入得,
,解得,,
∴AB的解析式为,
同理可求直线AC的解析式为,
设点D坐标为,点M坐标为,
∵,
∴
∵,,
∴点E是由点D向右平移3个单位,向上平移9个单位得到的,则点E坐标为,
∵∠EFM=∠DGM=∠DME
∴∠FEM+∠FME=∠DMG+∠FME =90°,
∴∠FEM =∠DMG,
∵DM=EM,
∴△DGM≌△MFE,
∴DG=FM,GM=EF,
根据坐标可列方程组,,
解得,,
所以,点M坐标为,
故选:A.
【点睛】
本题考查了求一次函数解析式和全等三角形的判定与性质,解题关键是求出直线解析式,设出点的坐标,利用全等三角形建立方程.
5、D
【解析】
【分析】
根据一次函数的性质对A、C、D进行判断;根据一次函数图象上点的坐标特征对D进行判断,,随的增大而增大,函数从左到右上升;,随的增大而减小,函数从左到右下降.由于与轴交于,当时,在轴的正半轴上,直线与轴交于正半轴;当时,在轴的负半轴,直线与轴交于负半轴.
【详解】
解:A、函数的图象与直线平行,故本选项说法正确;
B、把代入,所以它的图象与轴的交点坐标是,故本选项说法正确;
C、,所以随自变量的增大而减小,故本选项说法正确;
D、,,函数图象经过第一、二、四象限,故本选项说法不正确;
故选:D.
【点睛】
本题考查了一次函数的性质,以及k对自变量和因变量间的关系的影响,熟练掌握k的取值对函数的影响是解决本题的关键.
6、B
【解析】
【分析】
过作轴,可证得,从而得到,,可得到再由,,即可求解.
【详解】
解:过作轴,则,
对于直线,令,得到,即,,
令,得到,即,,
,
为等腰直角三角形,即,,
,
,
在和中,
,
,
,,即,
,
设直线的解析式为,
,
,
解得 .
过、两点的直线对应的函数表达式是.
故选:B
【点睛】
本题主要考查了求一次函数解析式,一次函数的图象和性质,全等三角形的判定和性质,等腰三角形的性质,熟练掌握相关知识点,并利用数形结合思想解答是解题的关键.
7、D
【解析】
【分析】
根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.
【详解】
解:根据表可得y1=kx+b中y随x的增大而增大;
y2=mx+n中y随x的增大而减小,且两个函数的交点坐标是(﹣1,2).
则当x>﹣1时,kx+b>mx+n.
故选:D.
【点睛】
本题考查了一次函数与一元一次不等式,一次函数的性质,正确确定增减性以及交点坐标是关键.
8、B
【解析】
【分析】
根据图象可知15分钟后,甲仓库内快件数量为130件,据此可得甲仓库揽收快件的速度,进而得出时,甲仓库内快件数;由图象可知45分钟,乙仓库派送快件数量为180件,可得乙仓库每分钟派送快件的数量,进而得出乙仓库快件的总数量,然后根据题意列方程即可求出两仓库快递件数相同是时间.
【详解】
解:由题意结合图象可知:
15分钟后,甲仓库内快件数量为130件,故①说法错误;
甲仓库揽收快件的速度为:(件分),
所以时,甲仓库内快件数为:(件,故③说法正确;
(分,
即45分钟乙仓库派送快件数量为180件,
所以乙仓库每分钟派送快件的数量为:(件,故②说法错误;
所以乙仓库快件的总数量为:(件,
设分钟后,两仓库快递件数相同,根据题意得:
,
解得,
即时,两仓库快递件数相同,故④说法正确.
所以说法正确的有③④共2个.
故选:B.
【点睛】
本题考查了一次函数的应用,解题的关键是结合图象,理解图象中点的坐标代表的意义.
9、D
【解析】
【分析】
根据一次函数的增减性判断A;根据两条直线平行时,k值相同而b值不相同判断B;根据一次函数图象与系数的关系判断C、D.
【详解】
A、一次函数中,∵,的符号未知,故不能判断函数的增减性,故本选项不正确;
B、当m=3时,一次函数与的图象不是两条平行线,故本选项不正确;
C、一次函数,过定点,故本选项不正确;
D、一次函数,过定点,则不论m取何值,图像都经过第四象限,故本选项正确.
故选D.
【点睛】
本题考查了两条直线的平行问题:若直线y1=k1x+b1与直线y2=k2x+b2平行,那么k1=k2,b1≠b2.也考查了一次函数的增减性以及一次函数图象与系数的关系.
10、C
【解析】
【分析】
根据平行线的性质,函数的定义,三角形内角和定理逐一判断即可.
【详解】
解:A、两直线平行,内错角相等,故原命题是假命题,不符合题意;
B、若,则,故原命题是假命题,不符合题意;
C、直角三角形中,两锐角和的函数关系是一次函数,故原命题是真命题,符合题意;
D、在中,,那么最大角∠C=,故△ABC为锐三角形,故原命题是假命题,不符合题意;
故选:C.
【点睛】
本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题叫定理.熟练掌握平行线的性质,三角形内角和定理是解题的关键.
二、填空题
1、自变量
【解析】
略
2、(答案不唯一)
【解析】
【分析】
根据一次函数的图象与性质即可得.
【详解】
解:设这个一次函数表达式为,
∵一次函数图象经过第一、二、四象限,
∴,,
∴取,,
可得,
故答案为:(答案不唯一).
【点睛】
本题考查了一次函数的图象与性质,根据一次函数的图象与性质判断出,是解题关键.
3、
【解析】
【分析】
设过的正比例函数为: 求解的值及函数解析式,再把代入函数解析式即可.
【详解】
解:设过的正比例函数为:
解得:
所以正比例函数为:
当时,
故答案为:
【点睛】
本题考查的是利用待定系数法求解正比例函数的解析式,正比例函数的性质,熟练的利用待定系数法列方程是解本题的关键.
4、一条直线
【解析】
略
5、
【解析】
【分析】
由两个一次函数的图象平行求解 再把(2,3)代入函数的解析式求解即可.
【详解】
解: 直线y=kx+b(k≠0)的图像与直线y=-2x平行,
把点(2,3)代入中,
解得:
所以一次函数的解析式为:
故答案为:
【点睛】
本题考查的是利用待定系数法求解二次函数的解析式,掌握“两直线平行,两个一次函数的比例系数相等,而不相等”是解本题的关键.
三、解答题
1、 (1)图象见解析;
(2)甲、乙两人在途中相遇的时间为40分钟,60分钟和80分钟的时候.
【解析】
【分析】
(1)根据乙的步行速度始终不变,且他在途中不休息,即直接连接原点和点(120,9000)即可;
(2)根据图象可判断甲、乙两人在途中相遇3次,分段计算,利用待定系数法结合图象即可求出相遇的时间.
(1)
乙离A地的距离(单位:m)与时间x之间的函数图像,如图即是.
(2)
根据题意结合图象可知甲、乙两人在途中相遇3次.
如图,第一次相遇在AB段,第二次相遇在BC段,第三次相遇在CD段,
根据题意可设的解析式为:,
∴,
解得:,
∴的解析式为.
∵甲的步行速度为100m/min,他每走半个小时就休息15min,
∴甲第一次休息时走了米,
对于,当时,即,
解得:.
故第一次相遇的时间为40分钟的时候;
设BC段的解析式为:,
根据题意可知B(45,3000),D (75,6000).
∴,
解得:,
故BC段的解析式为:.
相遇时即,故有,
解得:.
故第二次相遇的时间为60分钟的时候;
对于,当时,即,
解得:.
故第三次相遇的时间为80分钟的时候;
综上,甲、乙两人在途中相遇的时间为40分钟,60分钟和80分钟的时候.
【点睛】
本题考查一次函数的实际应用.理解题意,掌握利用待定系数法求函数解析式是解答本题的关键.
2、 (1)36千米
(2)y=90x-24 (0.8≤x≤2)
(3)1.2小时
【解析】
【分析】
(1)由OA段可求得此时小龚驾车的速度,从而可求得36分钟离家的距离;
(2)用待定系数法.AB段过点A与B,把这两点的坐标代入所设函数解析式中即可求得函数解析式;
(3)由题意可得小龚离家的距离,根据(2)中求得的函数解析式的函数值,解方程即可求得x的值,从而求得小龚行驶的时间.
(1)
在OA段,小龚行驶的速度为:48÷0.8=60(千米/时),36分钟=0.6小时,则小龚出发36分钟时,离家的距离为60×0.6=36(千米);
(2)
由图象知: ,
设AB段的函数解析式为:
把A、B两点的坐标分别代入上式得:
解得:
∴AB段的函数解析式为(0.8≤x≤2)
(3)
由图象知,当小龚离目的地还有72千米时,他已行驶了156−72=84(千米)
所以在中,当y=84时,即,得
即小龚离目的地还有72千米,小龚行驶了1.2小时.
【点睛】
本题考查了一次函数(正比例函数)的图象与性质,待定系数法求函数解析式,已知函数值求自变量的值等知识,数形结合是本题的关键.
3、 (1)见解析
(2)直线l1与l2不相交
【解析】
【分析】
(1)将所给点代入直线中,看等式是否成立,再判断该点是否在直线上;
(2)求出解析式与比较,发现系数相同,故不可能相交.
【详解】
(1)把x=﹣2代入y=mx+2m﹣3得,y=﹣2m+2m﹣3=﹣3,
∴点(﹣2,﹣3)在直线l2上;
(2)∵直线l1经过原点与点P(m,2m),
∴直线l1为y=2x,
当m=2时,则直线l2:y=2x+1,
∵x的系数相同,
∴直线l1与l2不相交.
【点睛】
本题考查平面直角坐标系中的直线解析式求法、点是否在直线上的判断、两直线是否相交,掌握这些是解题关键.
4、 (1)30;
(2)y=10x+100;一次项的系数是表示甲登山的速度;
(3)3或10或13分钟
【解析】
【分析】
(1)根据图象直接得到答案;
(2)利用待定系数法解答;
(3)求出甲登山速度,由此求出乙登山的函数解析式,列方程当10x+100−(30x−30)=70时,解得,当30x−30−(10x+100)=70时,当300−(10x+100)=70时,解方程即可.
(1)
解:由图象可得b=15÷1×2=30米,
故答案为:30.
(2)
解:设甲距地面的高度与登山时间的关系式y=kx+m,
由图象可得,过点C(0,100)、D(20,300),
∴,解得,
∴甲距地面的高度与登山时间的关系式y=10x+100;
一次项的系数是表示甲登山的速度;
(3)
解:甲登山速度为(300-100)÷20=10(米/分钟),
当0≤x≤2时,y=15x;当x≥2时,y=30+10×3(x-2)=30x-30.
当y=30x-30=300时,x=11.
甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0⩽x⩽20),
当10x+100−(30x−30)=70时,解得:x=3;
当30x−30−(10x+100)=70时,解得:x=10;
当300−(10x+100)=70时,解得:x=13.
∴登山3分钟、10分钟或13分钟时,甲乙两人距离地面的高度差为70米.
【点睛】
此题考查了一次函数的图象,一元一次方程的应用,待定系数法求函数解析式,正确理解函数图象并应用解决问题是解题的关键.
5、 (1)y=2x+3
(2)S△BOC=
【解析】
【分析】
(1)根据点A、B的坐标利用待定系数法即可求出一次函数的解析式;
(2)利用直线解析式求得C的坐标,然后根据三角形面积公式即可求得△BOC的面积.
(1)
解:∵一次函数y=kx+b(k≠0)的图象经过点A(﹣1,1),B(0,3).
∴,解得:,
∴这个一次函数的解析式为:y=2x+3.
(2)
解:令y=0,则2x+3=0,解得x=﹣,
∴C(﹣,0),
∵B(0,3).
∴S△BOC==.
【点睛】
本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,三角形的面积,熟练掌握利用待定系数法求一次函数解析式的方法是解题的关键.
数学八年级下册第二十章 函数综合与测试一课一练: 这是一份数学八年级下册第二十章 函数综合与测试一课一练,共27页。试卷主要包含了函数y=的自变量x的取值范围是等内容,欢迎下载使用。
冀教版八年级下册第二十一章 一次函数综合与测试课后复习题: 这是一份冀教版八年级下册第二十一章 一次函数综合与测试课后复习题,共24页。
初中数学冀教版八年级下册第二十一章 一次函数综合与测试复习练习题: 这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试复习练习题,共29页。试卷主要包含了一次函数的大致图象是等内容,欢迎下载使用。