搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年冀教版八年级数学下册第二十一章一次函数综合练习试题(无超纲)

    2021-2022学年冀教版八年级数学下册第二十一章一次函数综合练习试题(无超纲)第1页
    2021-2022学年冀教版八年级数学下册第二十一章一次函数综合练习试题(无超纲)第2页
    2021-2022学年冀教版八年级数学下册第二十一章一次函数综合练习试题(无超纲)第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试一课一练

    展开

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试一课一练,共22页。试卷主要包含了已知点,一次函数的图象不经过的象限是,已知正比例函数的图像经过点等内容,欢迎下载使用。
    八年级数学下册第二十一章一次函数综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、若点都在一次函数的图象上,则的大小关系是(       A. B. C. D.2、若一次函数的图像经过第一、三、四象限,则的值可能为(       A.-2 B.-1 C.0 D.23、下列不能表示的函数的是(     A.05101533.544.5B.C.D.4、对于正比例函数ykx,当x增大时,yx的增大而增大,则k的取值范围(     A.k<0 B.k≤0 C.k>0 D.k≥05、如图,已知直线轴交于点,与轴交于点,以点为圆心、长为半径画弧,与轴正半轴交于点,则点的坐标为(       A. B. C. D.6、已知点(﹣1,y1),(4,y2)在一次函数y=3x+a的图象上,则y1y2的大小关系是(  )A.y1y2 B.y1y2 C.y1y2 D.不能确定7、在平面直角坐标系中,若函数的图象经过第一、二、三象限,则的取值(       A.小于0 B.等于0 C.大于0 D.非负数8、一次函数的图象不经过的象限是(     A.第一象限 B.第二象限 C.第三象限 D.第四象限9、已知正比例函数的图像经过点(2,4)、(1,)、(1,),那么的大小关系是(        A.  B.  C.  D.无法确定10、甲、乙两人在笔直的公路上同起点、同终点、同方向匀速步行1200米,先到终点的人原地休息、已知甲先出发3分钟,在整个步行过程中,甲、乙两人之间的距离y(米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①乙用6分钟追上甲;②乙步行的速度为60米/分;③乙到达终点时,甲离终点还有400米;④整个过程中,甲乙两人相聚180米有2个时刻,分别是t=18和t=24.其中正确的结论有(       A.①② B.①③ C.②④ D.①②④第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,已知一次函数的图象经过两点,则________填“”“”或“2、若一次函数y=2xb的图象经过A(-1,1)则b=____,该函数图象经过点B(1,__)和点C(___,0).3、当k>0时,直线ykxb由左到右逐渐______,yx的增大而______.b>0时,直线经过第______象限;b<0时,直线经过第______ 象限.        k<0时,直线ykxb由左到右逐渐______,yx的增大而______.b>0时,直线经过第______象限;b<0时,直线经过第______象限.4、已知一次函数的图象(如图),则不等式 <0的解集是___________5、当k>0时,直线ykx经过第一、第三象限,从左向右______,即随着x的增大y也增大;当k<0时,直线ykx经过第二、第四象限,从左向右______,即随着x的增大y反而减小.三、解答题(5小题,每小题10分,共计50分)1、肥西县祥源花世界管理委员会要添置办公桌椅AB两种型号,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)直接写出A型桌椅每套    元,B型桌椅每套    元;(2)若管理委员会需购买两种型号桌椅共20套,若需要A型桌椅不少于12套,B型桌椅不少于6套,平均每套桌椅需要运费10元.设购买A型桌椅x套,总费用为y元.①求yx之间的函数关系,并直接写出x的取值范围;②求出总费用最少的购置方案.2、为了贯彻落实市委市政府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶AB两贫困村的计划.现决定从某地运送168箱小鸡到AB两村养殖,若用大、小货车共18辆,则恰好能一次性运完这批小鸡,已知这两种大、小货车的载货能力分别为10箱/辆和8箱/辆,其运往AB两村的运费如下表:目的地车型A村(元/辆)B村(元/辆)大货车8090小货车4060(1)试求这18辆车中大、小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往4村的大货车为x辆,前往AB两村总费用为y元,试求出yx的函数表达式,并直接写出自变量取值范围;(3)在(2)的条件下,若运往A村的小鸡不少于96箱,请你写出使总费用最少的货车调配方案,并求出最少费用.3、某厂计划生产AB两种产品若干件,已知两种产品的成本价和销售价如下表:A种产品B种产品成本价(元/件)400300销售价(元/件)560450(1)第一次工厂用220000元资金生产了AB两种产品共600件,求两种产品各生产多少件?(2)第二次工厂生产时,工厂规定A种产品生产数量不得超过B种产品生产数量的一半.工厂计划生产两种产品共3000件,应如何设计生产方案才能获得最大利润,最大利润是多少?4、甲、乙两车匀速从同一地点到距离出发地480千米处的景点,甲车出发半小时后,乙车以每小时80千米的速度沿同一路线行驶,两车分别到达目的地后停止,甲、乙两车之间的距离(千米)与甲车行驶的时间x(小时)之间的函数关系如图所示.(1)甲车行驶的速度是     千米/小时.(2)求乙车追上甲车后,yx之间的函数关系式,并写出自变量x的取值范围.(3)直接写出两车相距85千米时x的值.5、已知AB两地相距的路程为12km,甲骑自行车从A地出发前往B地,同时乙步行从B地出发前往A地,如图的折线OCD和线段EF,分别表示甲、乙两人与A地的路程yy与他们所行时间xh)之间的函数关系,且OCEF相交于点P(1)求yx的函数关系式以及两人相遇地点PA地的路程;(2)求线段OC对应的yx的函数关系式;(3)求经过多少h,甲、乙两人相距的路程为6km -参考答案-一、单选题1、A【解析】【分析】根据k>0时,yx的增大而增大,进行判断即可.【详解】解:∵点都在一次函数的图象上,yx的增大而增大故选A【点睛】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是牢记“当k>0时,yx的增大而增大;当k<0时,yx的增大而减小”.2、D【解析】【分析】利用一次函数图象与系数的关系可得出m-1>0,解之即可得出m的取值范围,再对照四个选项即可得出结论.【详解】解:∵一次函数y=(m-1)x-1的图象经过第一、三、四象限,m-1>0,m>1,m的值可能为2.故选:D.【点睛】本题考查了一次函数图象与系数的关系、解一元一次不等式,牢记“k>0,b<0y=kx+b的图象经过一、三、四象限”是解题的关键.3、B【解析】【分析】根据函数的定义(如果有两个变量xy,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,我们就把x称为自变量,把y称为因变量,yx的函数)及利用待定系数法确定一次函数解析式依次进行判断即可得.【详解】解:A、根据图表进行分析为一次函数,设函数解析式为:分别代入解析式为:解得:所以函数解析式为:yx的函数;B、从图象上看,一个x值,对应两个y值,不符合函数定义,y不是x的函数;C、D选项从图象及解析式看可得yx的函数.故选:B.【点睛】题目主要考查函数的定义及利用待定系数法确定一次函数解析式,深刻理解函数定义是解题关键.4、C【解析】5、C【解析】【分析】求出点A、点坐标,求出长即可求出点的坐标.【详解】解:当x=0时,,点B的坐标为(0,-1);当y=0时,,解得,,点A的坐标为(2,0);以点为圆心、长为半径画弧,与轴正半轴交于点,则C的坐标为故选:C【点睛】本题考查了一次函数与坐标轴交点坐标和勾股定理,解题关键是求出一次函数与坐标轴交点坐标,利用勾股定理求出线段长.6、A【解析】【分析】根据一次函数y=3x+a的一次项系数k>0时,函数值随自变量的增大而增大的性质来求解即可.【详解】解:∵一次函数y=3x+a的一次项系数为3>0,yx的增大而增大,∵点(﹣1,y1),(4,y2)在一次函数y=3x+a的图象上,﹣1<4,y1y2故选:A.【点睛】本题考查了一次函数的性质,掌握时,的增大而增大是解题的关键.7、C【解析】【分析】一次函数过第一、二、三象限,则,根据图象结合性质可得答案.【详解】解:如图,函数的图象经过第一、二、三象限,则函数的图象与轴交于正半轴, 故选C【点睛】本题考查的是一次函数的图象与性质,掌握“一次函数过第一、二、三象限,则”是解本题的关键.8、C【解析】【分析】根据一次函数的解析式,利用一次函数图象与系数的关系可得出一次函数的图象经过第一、二、四象限,此题得解.【详解】解:∵k=-2<0,b=1>0,∴一次函数y=-2x+1的图象经过第一、二、四象限,∴一次函数y=-2x+1的图象不经过第三象限.故选:C.【点睛】本题考查了一次函数图象与系数的关系,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.9、A【解析】【分析】先求出正比例函数解析式根据正比例函数的图象性质,当k<0时,函数随x的增大而减小,可得y1y2的大小.【详解】解:∵正比例函数的图像经过点(2,4)、代入解析式得解得∴正比例函数为<0,yx的增大而减小,由于-1<1,故y1<y2故选:A.【点睛】本题考查了正比例函数图象上点的坐标特征,用到的知识点为:正比例函数的图象,当k<0时,yx的增大而减小是解题关键.10、A【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由题意可得:甲步行的速度为(米分);由图可得,甲出发9分钟时,乙追上甲,故乙用6分钟追上甲,结论正确;∴乙步行的速度为/结论正确;乙走完全程的时间(分乙到达终点时,甲离终点距离是:(米结论错误;9分到23分钟这个时刻的函数关系式为,则把点代入得:,解得:设23分钟到30分钟这个时间的函数解析式为,把点代入得:,解得:分别代入可得:故④错误;故正确的结论有①②故选:A【点睛】本题主要考查一次函数的应用,解题的关键是从图象中找准等量关系.二、填空题1、【解析】【分析】根据一次函数的性质,当时,yx的增大而减小,即可得答案.【详解】解:一次函数x的增大而减小,故答案为:【点睛】本题考查了一次函数的性质,关键是掌握一次函数,当时,yx的增大而增大,当时,yx的增大而减小.2、     3     5     【解析】3、     上升     增大     一、二、三     一、三、四     下降     减小     一、二、四     二、三、四【解析】4、x<1【解析】【分析】根据一次函数与一元一次不等式的关系即可求出答案.【详解】解:∵y=kx+bkx+b<0,y<0,由图象可知:x<1,故答案为:x<1.【点睛】本题考查一次函数与一元一次不等式,解题的关键是正确理解一次函数与一元一次不等式的关系,本题属于基础题型.5、     上升     下降【解析】三、解答题1、 (1)A型桌椅每套600元,B型桌椅每套800元;(2)购买A型桌椅14套、B型桌椅6套,总费用最少,最少总费用为13400元【解析】【分析】(1)设A型桌椅每套a元,B型桌椅每套b元,根据题意列二元一次方程组并解方程即可;(2)①根据总费用=A型桌椅的费用+B型桌椅的费用建立yx之间的函数关系式子,再由A型桌椅不少于12套,B型桌椅不少于6套列出一元一次不等式组求解即可得出x的取值范围;②根据一次函数的性质求解即可.(1)解:设A型桌椅每套a元,B型桌椅每套b元,根据题意,得:解得:所以A型桌椅每套600元,B型桌椅每套800元;(2)解:①据题意,总费用y=600x+800(20-x)+20×10=-200x+16200,A型桌椅不少于12套,B型桌椅不少于6套,,解得:12≤x≤14,所以yx之间的函数关系为y=-200x+16200(12≤x≤14,x为整数);②由①知y=-200x+16200,且-200<0,yx的增大而减小,∴当x=14时,总费用y最少,最少费用为-200×14+16200=13400元,即购买A型桌椅14套、B型桌椅6套,总费用最少,最少总费用为13400元.【点睛】本题考查二元一次方程的应用、一次函数的应用、一元一次不等式组的应用,理解题意,正确列出方程或函数关系式是解答的关键.2、 (1)大货车用12辆,小货车用6辆(2)(4≤x≤12,且x为整数)(3)8辆大货车、2辆小货车前往A村;4辆大货车、4辆小货车前往B村.最少运费为1320元【解析】【分析】(1)设大货车用a辆,小货车用b辆,根据大、小两种货车共18辆,运输168箱小鸡,列方程组求解;(2)设前往A村的大货车为x辆,则前往B村的大货车为(12- x)辆,前往A村的小货车为(10- x)辆,前往B村的小货车为[6-(10-x)]辆,根据表格所给运费,求出yx的函数关系式;(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.(1)设大货车用a辆,小货车用b辆,根据题意得:解得:∴大货车用12辆,小货车用6辆.(2)设前往A村的大货车为x辆,则前往B村的大货车为(12- x)辆,前往A村的小货车为(10- x)辆,前往B村的小货车为[6-(10-x)]辆,y=80x+90(12-x)+40(10-x)+60[6-(10-x)]=10x+1240.4≤x≤12,且x为整数.(4≤x≤12,且x为整数)(3)由题意得:10x+8(10-x)≥96,解得:x≥8,又∵4≤x≤12,∴8≤x≤12且为整数,y=10x+1240,k=10>0,yx的增大而增大,∴当x=8时,y最小,最小值为y=10×8+1240=1320(元).答:使总运费最少的调配方案是:8辆大货车、2辆小货车前往A村;4辆大货车、4辆小货车前往B村.最少运费为1320元.【点睛】本题考查了二元一次方程组的应用,一次函数的应用,一元一次不等式组的应用,理解题意列出方程组、关系式、不等式是解题的关键.3、 (1)A种产品生产400件,B种产品生产200件(2)A种产品生产1000件时,利润最大为460000元【解析】【分析】(1)设A种产品生产x件,则B种产品生产(600-x)件,根据600件产品用220000元资金,即可列方程求解;(2)设A种产品生产x件,总利润为w元,得出利润wA产品数量x的函数关系式,根据增减性可得,A产品生产越多,获利越大,因而x取最大值时,获利最大,据此即可求解.(1)解:设A种产品生产x件,则B种产品生产(600-x)件,由题意得:解得:x=400,600-x=200,答:A种产品生产400件,B种产品生产200件.(2)解:设A种产品生产x件,总利润为w元,由题意得:得:因为10>0,wx的增大而增大 ,所以当x=1000时,w最大=460000元.【点睛】本题考查一元一次方程、一元一次不等式以及一次函数的实际应用. 解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.4、 (1)60(2)y=20x-40();(3)【解析】【分析】(1)用甲车行驶0.5小时的路程30除以时间即可得到速度;(2)分别求出相应线段的两个端点的坐标,再利用待定系数法求函数解析式;(3)分两种情况讨论:将x=85代入AB的解析式,求出一个值;另一种情况是乙停止运动,两车还相距85千米.(1)解:甲车行驶的速度是(千米/小时),故答案为:60;(2)解:设甲出发x小时后被乙追上,根据题意:60x=80(x-0.5),解得x=2,∴甲出发2小时后被乙追上,∴点A的坐标为(2,0),B(6.5,90),AB的解析式为y=kx+b,解得AB的解析式为y=20x-40(); (3)解:根据题意得:20x-40=85或60x=480-85,解得x=∴两车相距85千米时x【点睛】此题考查了一次函数的图象,一次函数的实际应用,利用待定系数法求函数解析式,并与行程问题的路程、时间、速度相结合,读出图形中的已知信息是关键,是一道综合性较强的函数题,有难度,同时也运用了数形结合的思想解决问题.5、 (1),9km(2)(3)经过小时或1小时,甲、乙两人相距6km.【解析】【分析】(1)根据题意和函数图象中的数据,可以得到yx的函数关系式以及两人相遇地点与A地的距离; (2)根据函数图象中的数据,可以计算出线段OP对应的yx的函数关系式; (3)根据(1)和(2)中的结果,分两种情况讨论,可以得到经过多少小时,甲、乙两人相距6km.(1)解:设yx的函数关系式是∵点E(0,12),F(2,0)在函数y乙=kx+b的图象上, ,解得yx的函数关系式是x=0.5时,即两人相遇地点PA地的距离是9km;(2)解:设线段OC对应的yx的函数关系式是y=ax∵点(0.5,9)在函数y=ax的图象上, ∴9=0.5a, 解得a=18, 即线段OP对应的yx的函数关系式是y=18x(3)解:①令 解得: 甲从A地到达B地的时间为:小时,经检验:不符合题意,舍去,②当甲到达B地时,乙离B地6千米所走时间为:(小时), 综上所述,经过小时或1小时,甲、乙两人相距6km.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.其中第三问要注意进行分类讨论. 

    相关试卷

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后作业题:

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后作业题,共22页。

    冀教版八年级下册第二十一章 一次函数综合与测试综合训练题:

    这是一份冀教版八年级下册第二十一章 一次函数综合与测试综合训练题,共25页。试卷主要包含了点A等内容,欢迎下载使用。

    数学八年级下册第二十一章 一次函数综合与测试精练:

    这是一份数学八年级下册第二十一章 一次函数综合与测试精练,共31页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map