初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步练习题
展开
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步练习题,共25页。试卷主要包含了巴中某快递公司每天上午7,,两地相距80km,甲,已知一次函数y=等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,函数和的图像相交于点P(1,m),则不等式的解集为( )A. B. C. D.2、甲、乙两车从城出发前往城,在整个行驶过程中,汽车离开城的距离与行驶时间的函数图象如图所示,下列说法正确的有( )①甲车的速度为;②乙车用了到达城;③甲车出发时,乙车追上甲车A.0个 B.1个 C.2个 D.3个3、某网店销售一款市场上畅销的护眼台灯,在销售过程中发现,这款护眼台灯销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x元,每星期销售量为y个.则y与x的函数关系式为( )A.y=﹣2x+100 B.y=﹣2x+40 C.y=﹣2x+220 D.y=﹣2x+604、AB两地相距20km,甲从A地出发向B地前进,乙从B地出发向A地前进,两人沿同一直线同时出发,甲先以8km/h的速度前进1小时,然后减慢速度继续匀速前进,甲乙两人离A地的距离s(km)与时间t(h)的关系如图所示,则甲出发( )小时后与乙相遇.A.1.5 B.2 C.2.5 D.35、巴中某快递公司每天上午7:00﹣8:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,下列说法正确的个数为( )①15分钟后,甲仓库内快件数量为180件;②乙仓库每分钟派送快件数量为8件;③8:00时,甲仓库内快件数为400件;④7:20时,两仓库快递件数相同.A.1个 B.2个 C.3个 D.4个6、已知点,都在直线上,则与的大小关系为( )A. B. C. D.无法比较7、,两地相距80km,甲、乙两人沿同一条路从地到地.甲、乙两人离开地的距离(单位:km)与时间(单位:h)之间的关系如图所示.下列说法错误的是( )A.乙比甲提前出发1h B.甲行驶的速度为40km/hC.3h时,甲、乙两人相距80km D.0.75h或1.125h时,乙比甲多行驶10km8、如图,李爷爷要围一个长方形菜园ABCD,菜园的一边利用足够长的墙,用篱笆围成的另外三边的总长恰好为24m,设边BC的长为xm,边AB的长为ym(x>y).则y与x之间的函数表达式为( )A.y=﹣2x+24(0<x<12) B.y=﹣x+12(8<x<24)C.y=2x﹣24(0<x<12) D.y=x﹣12(8<x<24)9、已知一次函数y=(1﹣3k)x+k的函数值y随x的增大而增大,且图象经过第一、二、三象限,则k的值( )A.k>0 B.k<0 C.0<k< D.k<10、已知点,都在直线上,则、大小关系是( )A. B. C. D.不能计较第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、函数y=(m﹣2)x|m﹣1|+2是一次函数,那么m的值为___.2、如图,直线l1:y=kx+b与直线l2:y=﹣x+4相交于点P,若点P(1,n),则方程组的解是_____.3、直线y1=-x+m和y2=2x+n的交点如图,则不等式-x+m<2x+n的解集是_____.4、已知一次函数(m为常数),若其图象经过第一、三、四象限,则m的取值范围为____.5、如图,一次函数和的图象交于点,则不等式的解集是______.三、解答题(5小题,每小题10分,共计50分)1、已知一次函数的图象与轴交于点,与轴交于点(1)求、两点的坐标;(2)画出函数的图象2、如图,在平面直角坐标系中,直线AB为y=﹣x+b交y轴于点A(0,3),交x轴于点B,直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).(1)求点B的坐标及点O到直线AB的距离;(2)求△ABP的面积(用含n的代数式表示);(3)当S△ABP=时,在第一象限找点C,使△PBC为等腰直角三角形,直接写出点C的坐标.3、一个皮球从16m的高处落下,第一次落地后反弹起8m,第二次落地后反弹起4m,以后每次落地后的反弹高度都减半,h表示反弹高度(单位:m),n表示落地次数.(1)写出表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式;(2)求皮球第几次落地后的反弹高度为m.4、某校计划为在校运会上表现突出的12名志愿者每人颁发一件纪念品,李老师前往购买钢笔和笔记本作为纪念品,如果买10支钢笔和2本笔记本,需230元;如果买8支钢笔和4本笔记本,需220元.(1)求钢笔和笔记本的单价;(2)售货员提示:当购买的钢笔超过6支时,所有的钢笔打9折.设购买纪念品的总费用为w元,其中钢笔的支数为a.①当时,求w与a之间的函数关系式;②李老师购买纪念品一共花了210元钱,他可能购买了多少支钢笔?5、在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过点A(﹣1,1),B(0,3).(1)求这个一次函数的解析式;(2)若这个一次函数的图象与x轴的交点为C,求△BOC的面积. -参考答案-一、单选题1、B【解析】【分析】由题意首先确定y=mx和y=kx-b的交点以及作出y=kx-b的大体图象,进而根据图象进行判断即可.【详解】解:∵y=kx+b的图象经过点P(1,m),∴k+b=m,当x=-1时,kx-b=-k-b=-(k+b)=-m,即(-1,-m)在函数y=kx-b的图象上.又∵(-1,-m)在y=mx的图象上.∴y=kx-b与y=mx相交于点(-1,-m).则函数图象如图.则不等式-b≤kx-b≤mx的解集为-1≤x≤0.故选:B.【点睛】本题考查一次函数与不等式的关系,运用数形结合思维分析并正确确定y=kx-b和y=mx的交点是解题的关键.2、C【解析】【分析】求出正比函数的解析式,k值的绝对值表示车的速度;横轴上两个时间点的差表示乙走完全程所用时间,求出一次函数的解析式,确定它与正比例函数的交点坐标,横坐标即为二车相遇时间.【详解】设甲的解析式为y=kx,∴6k=300,解得k=50,∴=50x,∴甲车的速度为,∴①正确;∵乙晚出发2小时,∴乙车用了5-2=3(h)到达城,∴②错误;设,∴,∴,∴,∵,∴,即甲行驶4小时,乙追上甲,∴③正确;故选C.【点睛】本题考查了待定系数法确定函数的解析式,函数图像,交点坐标的确定,解二元一次方程组,熟练掌握待定系数法,准确求交点的坐标是解题的关键.3、C【解析】【分析】根据单价为60元时,每星期卖出100个,每涨价1元,每星期少卖出2个,列出关系式即可.【详解】解:∵单价为60元时,每星期卖出100个.销售单价,每涨价1元,少卖出2个,∴设销售单价为x元,则涨价(x-60)元,每星期少卖出2(x-60)个.,∴y=100−2(x-60)=-2x+220,故选C.【点睛】此题主要考查了由实际问题列函数关系式,关键是正确理解题意,找出题目中的等量关系.4、B【解析】【分析】根据题意结合图象分别求出甲减速后的速度已经乙的速度,再列方程解答即可.【详解】解:甲减速后的速度为:(20﹣8)÷(4﹣1)=4(km/h),乙的速度为:20÷5=4(km/h),设甲出发x小时后与乙相遇,根据题意得8+4(x﹣1)+4x=20,解得x=2.即甲出发2小时后与乙相遇.故选:B.【点睛】本题考查了一次函数的应用,解题的关键是读懂图象信息,灵活应用速度、路程、时间之间的关系解决问题.5、B【解析】【分析】根据图象可知15分钟后,甲仓库内快件数量为130件,据此可得甲仓库揽收快件的速度,进而得出时,甲仓库内快件数;由图象可知45分钟,乙仓库派送快件数量为180件,可得乙仓库每分钟派送快件的数量,进而得出乙仓库快件的总数量,然后根据题意列方程即可求出两仓库快递件数相同是时间.【详解】解:由题意结合图象可知:15分钟后,甲仓库内快件数量为130件,故①说法错误;甲仓库揽收快件的速度为:(件分),所以时,甲仓库内快件数为:(件,故③说法正确;(分,即45分钟乙仓库派送快件数量为180件,所以乙仓库每分钟派送快件的数量为:(件,故②说法错误;所以乙仓库快件的总数量为:(件,设分钟后,两仓库快递件数相同,根据题意得:,解得,即时,两仓库快递件数相同,故④说法正确.所以说法正确的有③④共2个.故选:B.【点睛】本题考查了一次函数的应用,解题的关键是结合图象,理解图象中点的坐标代表的意义.6、A【解析】【分析】根据一次函数的增减性分析,即可得到答案.【详解】∵直线上,y随着x的增大而减小又∵ ∴ 故选:A.【点睛】本题考查了一次函数的增减性;解题的关键是熟练掌握一次函数图像的性质,从而完成求解.7、C【解析】【分析】根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:A、根据图象可得乙比甲提前出发1h,故选项A说法正确,不符合题意;B、甲行驶的速度为20÷(1.5-1)=40km/h,故选项B说法正确,不符合题意;C、乙行驶的速度为 ∴3h时,甲、乙两人相距,故选项C说法错误,符合题意;D、; ∴0.75h或1.125h时,乙比甲多行驶10km,∴选项D说法正确,不符合题意.故选C.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答8、B【解析】【分析】根据菜园的三边的和为24m,进而得出一个x与y的关系式,然后根据题意可得关于x的不等式,求解即可确定x的取值范围.【详解】解:根据题意得,菜园三边长度的和为24m,即,所以,由y>0得,,解得,当时,即,解得,∴,故选:B.【点睛】题目主要考查一次函数的运用及根据条件得出不等式求解,理解题意,利用不等式得出自变量的取值范围是解题关键.9、C【解析】【分析】根据一次函数的性质得1﹣3k>0,解得k<,再由图象经过一、二、三象限,根据一次函数与系数的关系得到k>0,于是可确定k的取值范围.【详解】解:∵一次函数y=(1﹣3k)x+k,y随x的增大而增大,∴1﹣3k>0,解得k<,图象经过第一、三象限,∵图象经过一、二、三象限,∴k>0,∴k的取值范围为0<k<.故选:C.【点睛】本题考查了一次函数y=kx+b(k≠0,k,b为常数)的性质.它的图象为一条直线,当k>0,图象经过第一,三象限,y随x的增大而增大;当k<0,图象经过第二,四象限,y随x的增大而减小;当b>0,图象与y轴的交点在x轴的上方;当b=0,图象过坐标原点;当b<0,图象与y轴的交点在x轴的下方.10、C【解析】【分析】根据一次函数的增减性解答.【详解】解:∵直线,k=-2<0,∴y随着x的增大而减小,∵点,都在直线上,-4<2,∴,故选:C.【点睛】此题考查了一次函数的增减性:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小,熟记性质是解题的关键.二、填空题1、0【解析】【分析】根据一次函数的定义,列出关于m的方程和不等式进行求解即可.【详解】解:由题意得,|m-1|=1且m-2≠0,解得:m=2或m=0且m≠2,∴m=0.故答案为:0.【点睛】本题主要考查了一次函数,一次函数y=kx+b的条件是:k、b为常数,k≠0,自变量次数为1.2、【解析】【分析】由两条直线的交点坐标P(1,n),先求出n,再求出方程组的解即可.【详解】解:∵y=﹣x+4经过P(1,n),∴n=-1+4=3,∴n=3,∴直线l1:y=kx+b与直线l2:y=﹣x+4相交于点P(1,3),∴,故答案为.【点睛】本题考查了一次函数的交点与方程组的解的关系、待定系数法等知识,解题的关键是理解方程组的解就是两个函数图象的交点坐标.3、x<1【解析】略4、【解析】【分析】根据一次函数的性质列出关于m的不等式组求解.【详解】解:由一次函数的图象经过第一、三、四象限,∴,解得,m>.故答案为:.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.5、x≥1【解析】【分析】结合图象,写出直线y=mx+n在直线y=kx+b下方所对应的自变量的范围即可.【详解】解:∵函数y=mx+n的图象与y=kx+b的图象交于点P(1,2),∴当x≥1时,kx+b≥mx+n,∴不等式的解集为x≥1.故答案为:x≥1.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.三、解答题1、 (1),(2)见解析【解析】【分析】(1)分别令,即可求得点的坐标;(2)根据两点,作出一次函数的图象即可(1)令,则,即,令,则,即(2)过,作直线的图象,如图所示,【点睛】本题考查了一次函数与坐标轴的交点问题,画一次函数图象,掌握一次函数的性质是解题的关键.2、 (1)B(4,0),(2)(3)(5,7)或(8,3)或(,)【解析】【分析】(1)求出直线AB的解析式,可求点B坐标,由面积法可求解;(2)求出点D坐标,由三角形的面积公式可求解;(3)先计算当S△ABP=时,P的坐标,以PB为边在第一象限作等腰直角三角形BPC,分三种情况讨论:分别以三个顶点为直角顶点画三角形,根据图形可得C的坐标.(1)解:∵直线AB为y=x+b交y轴于点A(0,3),∴b=3,AO=3,∴直线AB解析式为:y=x+3,令y=0,则0=x+3,x=4,∴B(4,0),∴OB=4,∴AB==5,∴S△AOB=×OA×OB=×AB×点O到直线AB的距离,∴点O到直线AB的距离==;(2)∵点D在直线AB上,∴当x=1时,y=,即点D(1,),∴PD=n-,∵OB=4,∴S△ABP==;(3)当S△ABP=时,,解得n=4,∴点P(1,4),∵E(1,0),∴PE=4,BE=3,第1种情况,如图,当∠CPB=90°,BP=PC时,过点C作CN⊥直线x=1于点N.∵∠CPB=90°,∴∠CPN+∠BPE=90°,又∠CPN+∠PCN=90°,∴∠BPE=∠PCN,又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△PEB(AAS),∴PN=EB=3,PE=CN=4,∴NE=NP+PE=3+4=7,∴C(5,7);第2种情况,如图,当∠PBC=90°,BP=BC时,过点C作CF⊥x轴于点F.同理可证:△CBF≌△BPE(AAS),∴CF=BE=3,BF=PE=4,∴OF=OB+BF=4+4=8,∴C(8,3);第3种情况,如图3,当∠PCB=90°,CP=CB时,过点C作CH⊥BE,垂足为H,过点P作PG⊥CH,垂足为G,同理可证:△PCG≌△CBH(AAS),∴CG=BH,PG=CH,∵PE=4,BE=3,设CG=BH=x,PG=CH=y,则PE=GH=x+y=4,BE=PG-BH=y-x=3,解得:x=,y=,∴C(,),∴以PB为边在第一象限作等腰直角三角形BPC,点C的坐标是(5,7)或(3,8)或(,).【点睛】本题是一次函数综合题,考查了待定系数法,三角形面积公式,全等三角形的判定和性质,利用分类讨论思想解决问题是解题的关键.3、 (1)h(n为正整数);(2)皮球第7次落地后的反弹高度为m.【解析】【分析】(1)由题意可知,每次落地后的反弹高度都减半,依次可得表示反弹高度与落地次数的对应函数关系;(2)把h代入(1)中解析式即可解题.(1)解:根据题意得,表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式:h(n为正整数);(2)把h代入h,得,2n=16×8=27,n=7故皮球第7次落地后的反弹高度为m.【点睛】本题考查一次函数的应用,是基础考点,掌握相关知识是解题关键.4、 (1)钢笔的单价为元,笔记本的单价为元.(2)①;②6支或10支【解析】【分析】(1)设钢笔的单价为元,笔记本的单价为元,再根据买10支钢笔和2本笔记本,需230元;买8支钢笔和4本笔记本,需220元,列方程组,再解方程组即可;(2)①当时,由总费用等于购买钢笔与笔记本的费用之和可列函数关系式,②分两种情况列方程,当或 再解方程可得答案.(1)解:设钢笔的单价为元,笔记本的单价为元,则 解得: 答:钢笔的单价为元,笔记本的单价为元.(2)解:①当时,w与a之间的函数关系式为: 所以w与a之间的函数关系式为 ②当时,则 解得: 当时, 解得: 所以李老师购买纪念品一共花了210元钱,他可能购买了6支或支钢笔.【点睛】本题考查的是二元一次方程组的应用,一次函数的应用,掌握“确定相等关系列二元一次方程组与一次函数的关系式”是解本题的关键.5、 (1)y=2x+3(2)S△BOC=【解析】【分析】(1)根据点A、B的坐标利用待定系数法即可求出一次函数的解析式;(2)利用直线解析式求得C的坐标,然后根据三角形面积公式即可求得△BOC的面积.(1)解:∵一次函数y=kx+b(k≠0)的图象经过点A(﹣1,1),B(0,3).∴,解得:,∴这个一次函数的解析式为:y=2x+3.(2)解:令y=0,则2x+3=0,解得x=﹣,∴C(﹣,0),∵B(0,3).∴S△BOC==.【点睛】本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,三角形的面积,熟练掌握利用待定系数法求一次函数解析式的方法是解题的关键.
相关试卷
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试练习,共23页。试卷主要包含了巴中某快递公司每天上午7等内容,欢迎下载使用。
这是一份初中冀教版第二十一章 一次函数综合与测试复习练习题,共31页。试卷主要包含了,两地相距80km,甲,已知一次函数y=kx+b等内容,欢迎下载使用。
这是一份2020-2021学年第二十一章 一次函数综合与测试课后作业题,共27页。试卷主要包含了下列不能表示是的函数的是等内容,欢迎下载使用。