初中数学第二十一章 一次函数综合与测试习题
展开
这是一份初中数学第二十一章 一次函数综合与测试习题,共26页。试卷主要包含了已知P1,直线不经过点,已知一次函数y=等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数专项训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,已知点K为直线l:y=2x+4上一点,先将点K向下平移2个单位,再向左平移a个单位至点K1,然后再将点K1向上平移b个单位,向右平1个单位至点K2,若点K2也恰好落在直线l上,则a,b应满足的关系是( )
A.a+2b=4 B.2a﹣b=4 C.2a+b=4 D.a+b=4
2、点和都在直线上,且,则与的关系是( )
A. B. C. D.
3、某种摩托车的油箱最多可以储油10升,李师傅记录了他的摩托车加满油后,油箱中的剩余油量y(升)与摩托车行驶路程x(千米)的关系,则当0≤x≤500时,y与x的函数关系是( ).
x(千米)
0
100
150
300
450
500
y(升)
10
8
7
4
1
0
A.正比例函数关系 B.一次函数关系
C.二次函数关系 D.反比例函数关系
4、一次函数y=2x﹣5的图象不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5、已知P1(﹣3,y1)、P2(2,y2)是y=﹣2x+1的图象上的两个点,则y1、y2的大小关系是( )
A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定
6、直线不经过点( )
A.(0,0) B.(﹣2,3) C.(3,﹣2) D.(﹣3,2)
7、甲、乙两车从城出发前往城,在整个行驶过程中,汽车离开城的距离与行驶时间的函数图象如图所示,下列说法正确的有( )
①甲车的速度为;②乙车用了到达城;③甲车出发时,乙车追上甲车
A.0个 B.1个 C.2个 D.3个
8、一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离甲地的距离y(单位:km)与慢车行驶时间t(单位:h)的函数关系如图,则两车先后两次相遇的间隔时间是( )
A. B. C.3h D.
9、已知一次函数y=(1﹣3k)x+k的函数值y随x的增大而增大,且图象经过第一、二、三象限,则k的值( )
A.k>0 B.k<0 C.0<k< D.k<
10、如图,在平面直角坐标系中,线段AB的端点为A(﹣2,1),B(1,2),若直线y=kx﹣1与线段AB有交点,则k的值不能是( ).
A.-2 B.2
C.4 D.﹣4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、函数y=-7x的图象在______象限内,从左向右______,y随x的增大而______.
函数y=7x的图象在______象限内,从左向右______,y随x的增大而______.
2、解决含有多个变量的问题时,可以分析这些变量之间的关系,从中选取一个取值能影响其他变量的值的变量作为_______,然后根据问题的条件寻求可以反映实际问题的函数,以此作为解决问题的数学模型.
3、一般地,形如y=kx+b(k≠0,k、b为常数)的函数,叫做______函数.注意:k是常数,k≠0,k可以是正数、也可以是负数;b可以取______ .
4、当k>0时,直线y=kx+b由左到右逐渐______,y随x的增大而______.
① b>0时,直线经过第______象限;
② b<0时,直线经过第______ 象限.
当k<0时,直线y=kx+b由左到右逐渐______,y随x的增大而______.
①b>0时,直线经过第______象限;
② b<0时,直线经过第______象限.
5、函数和的图象相交于点,则方程的解为______.
三、解答题(5小题,每小题10分,共计50分)
1、一个皮球从16m的高处落下,第一次落地后反弹起8m,第二次落地后反弹起4m,以后每次落地后的反弹高度都减半,h表示反弹高度(单位:m),n表示落地次数.
(1)写出表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式;
(2)求皮球第几次落地后的反弹高度为m.
2、某厂计划生产A,B两种产品若干件,已知两种产品的成本价和销售价如下表:
A种产品
B种产品
成本价(元/件)
400
300
销售价(元/件)
560
450
(1)第一次工厂用220000元资金生产了A,B两种产品共600件,求两种产品各生产多少件?
(2)第二次工厂生产时,工厂规定A种产品生产数量不得超过B种产品生产数量的一半.工厂计划生产两种产品共3000件,应如何设计生产方案才能获得最大利润,最大利润是多少?
3、在平面直角坐标系xOy中,对于线段AB和点C,若△ABC是以AB为一条直角边,且满足AC>AB的直角三角形,则称点C为线段AB的“关联点”,已知点A的坐标为(0,1).
(1)若B(2,1),则点D(3,1),E(2,0),F(0,-3),G(-1,-2)中,是AB关联点的有_______;
(2)若点B(-1,0),点P在直线y=2x-3上,且点P为线段AB的关联点,求点P的坐标;
(3)若点B(b,0)为x轴上一动点,在直线y=2x+2上存在两个AB的关联点,求b的取值范围.
4、为巩固拓展脱贫攻坚成果,开启乡村振兴发展之门,某村村民组长组织村民加工板栗并进行销售.根据现有的原材料,预计加工规格相同的普通板栗、精品板栗共4000件.某天上午的销售件数和所卖金额统计如下表:
普通板栗(件)
精品板栗(件)
总金额(元)
甲购买情况
2
3
350
乙购买情况
4
1
300
(1)求普通板栗和精品板栗的单价分别是多少元.
(2)根据(1)中求出的单价,若普通板栗和精品板栗每件的成本分别为40元、60元,且加工普通板栗a件(),则4000件板栗的销售总利润为w元.问普通板栗和精品板栗各加工多少件,所获总利润最多?最多总利润是多少?
5、请用已学过的方法研究一类新函数y=k|x﹣b|(k,b为常数,且k≠0)的图象和性质:
(1)完成表格,并在给出的平面直角坐标系中画出函数y=|x﹣2|的图象;
x
﹣2
﹣1
0
1
2
3
4
5
6
y
4
2
1
0
1
2
4
(2)点(m,y1),(m+2,y2)在函数y=|x﹣2|的图象上.
①若y1=y2,则m的值为 ;
②若y1<y2,则m的取值范围是 ;
(3)结合函数图像,写出该函数的一条性质.
-参考答案-
一、单选题
1、C
【解析】
【分析】
点K为直线l:y=2x+4上一点,设再根据平移依次写出的坐标,再把的坐标代入一次函数的解析式,整理即可得到答案.
【详解】
解: 点K为直线l:y=2x+4上一点,设
将点K向下平移2个单位,再向左平移a个单位至点K1,
将点K1向上平移b个单位,向右平1个单位至点K2,
点K2也恰好落在直线l上,
整理得:
故选C
【点睛】
本题考查的是一次函数图象上点的坐标满足函数解析式,点的平移,掌握“点的平移坐标的变化规律”是解本题的关键.
2、A
【解析】
【分析】
根据一次函数图象的增减性,结合横坐标的大小关系,即可得到答案.
【详解】
解:∵直线y=-x+m的图象y随着x的增大而减小,
又∵x1≥x2,点A(x1,y1)和B(x2,y2)都在直线y=-x+m上,
∴y1≤y2,
故选:A.
【点睛】
本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.
3、B
【解析】
【分析】
根据表格数据,描点、连线画出函数的图象,根据函数图象进行判断即可
【详解】
根据表格数据,描点、连线画出函数的图象如图:
故y与x的函数关系是一次函数.
故选B.
【点睛】
本题考查了画一次函数图象,掌握一次函数图象的性质是解题的关键.
4、B
【解析】
【分析】
由直线的解析式得到k>0,b<0,利用一次函数的性质即可确定直线经过的象限.
【详解】
解:∵y=2x-5,
∴k>0,b<0,
故直线经过第一、三、四象限.
不经过第二象限.
故选:B.
【点睛】
此题主要考查一次函数的图象和性质,它的图象经过的象限由k,b的符号来确定.
5、A
【解析】
【分析】
分别把P1(-3,y1)、P2(2,y2)代入y=-2x+1,求出y1、y2的值,并比较出其大小即可.
【详解】
解:∵P1(-3,y1)、P2(2,y2)是y=-2x+1的图象上的两个点,
∴y1=6+1=7,y2=-4+1=-3,
∵7>-3,
∴y1>y2.
故选:A.
【点睛】
本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
6、B
【解析】
【分析】
将各点代入函数解析式即可得.
【详解】
解:A、当时,,即经过点,此项不符题意;
B、当时,,即不经过点,此项符合题意;
C、当时,,即经过点,此项不符题意;
D、当时,,即经过点,此项不符题意;
故选:B.
【点睛】
本题考查了正比例函数,熟练掌握正比例函数的图象与性质是解题关键.
7、C
【解析】
【分析】
求出正比函数的解析式,k值的绝对值表示车的速度;横轴上两个时间点的差表示乙走完全程所用时间,求出一次函数的解析式,确定它与正比例函数的交点坐标,横坐标即为二车相遇时间.
【详解】
设甲的解析式为y=kx,
∴6k=300,
解得k=50,
∴=50x,
∴甲车的速度为,
∴①正确;
∵乙晚出发2小时,
∴乙车用了5-2=3(h)到达城,
∴②错误;
设,
∴,
∴,
∴,
∵,
∴,
即甲行驶4小时,乙追上甲,
∴③正确;
故选C.
【点睛】
本题考查了待定系数法确定函数的解析式,函数图像,交点坐标的确定,解二元一次方程组,熟练掌握待定系数法,准确求交点的坐标是解题的关键.
8、A
【解析】
【分析】
根据图象得出,慢车的速度为 km/h,快车的速度为 km/h.从而得出快车和慢车对应的y与t的函数关系式.联立两个函数关系式,求解出图象对应两个交点的坐标,即可得出间隔时间.
【详解】
解:根据图象可知,慢车的速度为 km/h.
对于快车,由于往返速度大小不变,总共行驶时间是6h,
因此单程所花时间为3 h,故其速度为 km/h.
所以对于慢车,y与t的函数表达式为y=t (0≤t≤9)①.
对于快车,y与t的函数表达式为
y=,
联立①②,可解得交点横坐标为t=4.5,
联立①③,可解得交点横坐标为t=,
因此,两车先后两次相遇的间隔时间是,
故选:A.
【点睛】
本题主要考查根据函数图象求一次函数表达式,以及求两个一次函数的交点坐标.解题的关键是利用图象信息得出快车和慢车的速度,进而写出y与t的关系.
9、C
【解析】
【分析】
根据一次函数的性质得1﹣3k>0,解得k<,再由图象经过一、二、三象限,根据一次函数与系数的关系得到k>0,于是可确定k的取值范围.
【详解】
解:∵一次函数y=(1﹣3k)x+k,y随x的增大而增大,
∴1﹣3k>0,解得k<,图象经过第一、三象限,
∵图象经过一、二、三象限,
∴k>0,
∴k的取值范围为0<k<.
故选:C.
【点睛】
本题考查了一次函数y=kx+b(k≠0,k,b为常数)的性质.它的图象为一条直线,当k>0,图象经过第一,三象限,y随x的增大而增大;当k<0,图象经过第二,四象限,y随x的增大而减小;当b>0,图象与y轴的交点在x轴的上方;当b=0,图象过坐标原点;当b<0,图象与y轴的交点在x轴的下方.
10、B
【解析】
【分析】
当直线y=kx−1过点A时,求出k的值,当直线y=kx−1过点B时,求出k的值,介于二者之间的值即为使直线y=kx−1与线段AB有交点的x的值.
【详解】
解:①当直线y=kx−1过点A时,将A(−2,1)代入解析式y=kx−1得,k=−1,
②当直线y=kx−1过点B时,将B(1,2)代入解析式y=kx−1得,k=3,
∵|k|越大,它的图象离y轴越近,
∴当k≥3或k≤-1时,直线y=kx−1与线段AB有交点.
故选:B.
【点睛】
本题考查了两直线相交或平行的问题,解题的关键是掌握AB是线段这一条件,不要当成直线.
二、填空题
1、 第二、四象限 下降 减少 第一、三象限 上升 增大
【解析】
略
2、自变量
【解析】
略
3、 一次 任意实数
【解析】
略
4、 上升 增大 一、二、三 一、三、四 下降 减小 一、二、四 二、三、四
【解析】
略
5、
【解析】
【分析】
由题意知,方程的解为其交点的横坐标,进而可得结果.
【详解】
解:由题意知的解为两直线交点的横坐标
故答案为:.
【点睛】
本题考查了一次函数图象的交点与一次方程解的关系.解题的关键在于理解一次函数图象的交点与一次方程解的关系.
三、解答题
1、 (1)h(n为正整数);
(2)皮球第7次落地后的反弹高度为m.
【解析】
【分析】
(1)由题意可知,每次落地后的反弹高度都减半,依次可得表示反弹高度与落地次数的对应函数关系;
(2)把h代入(1)中解析式即可解题.
(1)
解:根据题意得,
表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式:h(n为正整数);
(2)
把h代入h,
得,
2n=16×8=27,
n=7
故皮球第7次落地后的反弹高度为m.
【点睛】
本题考查一次函数的应用,是基础考点,掌握相关知识是解题关键.
2、 (1)A种产品生产400件,B种产品生产200件
(2)A种产品生产1000件时,利润最大为460000元
【解析】
【分析】
(1)设A种产品生产x件,则B种产品生产(600-x)件,根据600件产品用220000元资金,即可列方程求解;
(2)设A种产品生产x件,总利润为w元,得出利润w与A产品数量x的函数关系式,根据增减性可得,A产品生产越多,获利越大,因而x取最大值时,获利最大,据此即可求解.
(1)
解:设A种产品生产x件,则B种产品生产(600-x)件,
由题意得:,
解得:x=400,
600-x=200,
答:A种产品生产400件,B种产品生产200件.
(2)
解:设A种产品生产x件,总利润为w元,由题意得:
由,
得:,
因为10>0,w随x的增大而增大 ,所以当x=1000时,w最大=460000元.
【点睛】
本题考查一元一次方程、一元一次不等式以及一次函数的实际应用. 解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.
3、 (1)点E,点F;
(2)()或();
(3)b的取值范围1<b<2或2<b<3.
【解析】
【分析】
(1)根据以点B为直角顶点,点B与点E横坐标相同,点E在过点B与AB垂直的直线上,△ABE为直角三角形,且AE大于AB;以点A为直角顶点,点A与点F横坐标相同,△AFB为直角三角形,BF大于AB即可;
(2)根据点A(0,1)点B(-1,0),OA=OB,∠AOB=90°,得出△AOB为等腰直角三角形,可得∠ABO=∠BAO=45°,以点A为直角顶点,过点A,与AB垂直的直线交x轴于S,利用待定系数法求出AS解析式为,联立方程组,以点B为直角顶点,过点B,与AB垂直的直线交y轴于R,∠OBR=90°-∠ABO=45°,可得△OBR为等腰直角三角形,OR=OB=1,点R(0,-1),利用平移的性质可求BR解析式为,联立方程组,解方程组即可;
(3)过点A与AB垂直的直线交直线y=2x+2于U,把△AOB绕点A顺时针旋转90°,得△AO′U,AO′=AO=1,O′U=OB=b,根据点U(-1,b-1)在直线上,得出方程,求出b的值,当过点A的直线与直线平行时没有 “关联点”,OB=OW=b=2,得出在1<b<2时,直线上存在两个AB的“关联点”,当b>2时,根据旋转性质将△AOB绕点A逆时针旋转90°得到△AO′U,得出AO′=AO=1,O′U=OB=b,根据点U(1,1+b)在直线上,列方程,得出即可.
(1)
解:点D与AB纵坐标相同,在直线AB上,不能构成直角三角形,
以点B为直角顶点,点B与点E横坐标相同,点E在过点B与AB垂直的直线上,
∴△ABE为直角三角形,且AE大于AB;
以点A为直角顶点,点A与点F横坐标相同,△AFB为直角三角形,AF=4>AB=2,
∴点E与点F是AB关联点,
点G不在A、B两点垂直的直线上,故不能构成直角三角形,
故答案为点E,点F;
(2)
解:∵点A(0,1)点B(-1,0),OA=OB,∠AOB=90°,
∴△AOB为等腰直角三角形,AB=
∴∠ABO=∠BAO=45°,
以点A为直角顶点,过点A,与AB垂直的直线交x轴于S,
∴∠OAS=90°-∠BAO=45°,
∴△AOS为等腰直角三角形,
∴OS=OA=1,点S(1,0),
设AS解析式为代入坐标得:
,
解得,
AS解析式为,
∴,
解得,
点P(),
AP=,AP>AB
以点B为直角顶点,过点B,与AB垂直的直线交y轴于R,
∴∠OBR=90°-∠ABO=45°,
∴△OBR为等腰直角三角形,
∴OR=OB=1,点R(0,-1),
过点R与AS平行的直线为AS直线向下平移2个单位,
则BR解析式为,
∴,
解得,
点P1(),
AP1=>,
∴点P为线段AB的关联点,点P的坐标为()或();
(3)
解:过点A与AB垂直的直线交直线y=2x+2于U,
把△AOB绕点A顺时针旋转90°,得△AO′U,
∴AO′=AO=1,O′U=OB=b,
点U(-1,b-1)在直线上,
∴
∴,
∴当b>1时存在两个“关联点”,
当b<1时,UA<AB,不满足定义,没有两个“关联点”
当过点A的直线与直线平行时没有 “关联点”
与x轴交点X(-1,0),与y轴交点W(0,2)
∵OA=OX=1,∠XOW=∠AOB=90°,AB⊥XW,
∴△OXW顺时针旋转90°,得到△OAB,
∴OB=OW=2,
∴在1<b<2时,直线上存在两个AB的“关联点”,
当b>2时,将△AOB绕点A逆时针旋转90°得到△AO′U,
∴AO′=AO=1,O′U=OB=b,
点U(1,1+b)在直线上,
∴
∴解得
∴当2<b<3时, 直线上存在两个AB的“关联点”,
当b>3时,UA<AB,不满足定义,没有两个“关联点”
综合得,b的取值范围1<b<2或2<b<3.
【点睛】
本题考查新定义线段的意义,直角三角形性质,仔细阅读新定义,由两个条件,(1)组成直角三角形,(2)AC>AB,等腰直角三角形,勾股定理两点距离公式,待定系数法求直线解析式,图形旋转,两函数交点联立方程组,掌握新定义线段的意义,直角三角形性质,仔细阅读新定义,由两个条件,(1)组成直角三角形,(2)AC>AB,等腰直角三角形,勾股定理两点距离公式,待定系数法求直线解析式,图形旋转,两函数交点联立方程组,是解题关键.
4、 (1)普通板栗的单价为55元,精品板栗的单价为80元;
(2)普通板栗加工1000件,精品板栗加工3000件,所获总利润最多,最多总利润是75000元.
【解析】
【分析】
(1)设普通板栗的单价为x元,精品板栗的单价为y元,根据表格列出二元一次方程组,求解即可得;
(2)加工普通板栗a件,则加工精品板栗(4000-a)件,根据题意可得利润的函数关系式,根据一次函数的性质及自变量的取值范围可得当时,所获总利润w最多,代入求解即可得.
(1)
解:设普通板栗的单价为x元,精品板栗的单价为y元,由题意得:
,
解得x=55y=80,
答:普通板栗的单价为55元,精品板栗的单价为80元;
(2)
解:加工普通板栗a件,则加工精品板栗(4000-a)件,
由题意得:,
∵,1000≤a≤3000,
∴当时,所获总利润w最多,
w=-5×1000+80000=75000,
∴,
答:普通板栗加工1000件,精品板栗加工3000件,所获总利润最多,最多总利润是75000元.
【点睛】
题目主要考查二元一次方程组的应用及一次函数的最大利润问题,理解题意,列出方程及函数解析式是解题关键.
5、 (1)3,3,画函数图象见解析;
(2)①;②m>1;
(3)见解析
【解析】
【分析】
(1)列表、描点,连线画出函数图象即可;
(2)观察图形,根据图象的性质即可得到结论;
(3)结合(2)中图象的性质,即可得到结论.
(1)
解:列表:
x
﹣2
﹣1
0
1
2
3
4
5
6
y
4
3
2
1
0
1
2
3
4
描点、连线,画出函数y=|x﹣2|图象如图:
(2)
解:点(m,y1),(m+2,y2)在函数y=|x﹣2|的图象上,
观察图象:y=|x﹣2|图象关于直线x=2对称,且当x>2时,y随x增大而增大,当xm,
①若y1=y2,则m+2-2=2-m,解得m=1;
②若y1<y2,则m>1,
故答案为:1,m>1;
(3)
解:对于函数y=k|x−b|,当k>0时,函数值y先随x的增大而减小,函数值为0后,再随x的增大而增大.
【点睛】
本题考查一次函数的图象及性质;熟练掌握一次函数的图象及性质,数形结合解题是关键.
相关试卷
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后测评,共28页。试卷主要包含了点A,已知正比例函数的图像经过点,如图所示,直线分别与轴等内容,欢迎下载使用。
这是一份2020-2021学年第二十一章 一次函数综合与测试课后作业题,共25页。试卷主要包含了如图,一次函数y=kx+b,已知一次函数y=等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后练习题,共25页。试卷主要包含了直线不经过点,若点,已知点等内容,欢迎下载使用。