初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后复习题
展开
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后复习题,共26页。试卷主要包含了当时,直线与直线的交点在,一次函数的大致图象是等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知直线与轴交于点,与轴交于点,以点为圆心、长为半径画弧,与轴正半轴交于点,则点的坐标为( )A. B. C. D.2、某商场为了增加销售额,推出“元旦销售大酬宾”活动,其活动内容为:“凡一月份在该商场一次性购物超过100元以上者,超过100元的部分按9折优惠.”在大酬宾活动中,小王到该商场为单位购买单价为60元的办公用品x件(x>2),则应付货款y(元)与商品件数x的函数关系式( )A.y=54x(x>2) B.y=54x+10(x>2)C.y=54x-90(x>2) D.y=54x+100(x>2)3、如图,一次函数y=f(x)的图像经过点(2,0),如果y>0,那么对应的x的取值范围是( )A.x<2 B.x>2 C.x<0 D.x>04、已知正比例函数y=3x的图象上有两点M(x1,y1)、N(x2,y2),如果x1>x2,那么y1与y2的大小关系是( )A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定5、当时,直线与直线的交点在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限6、一次函数的大致图象是( )A. B.C. D.7、如图,点A的坐标为,点B是x轴正半轴上的动点,以AB为腰作等腰直角,使,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是( )A. B.C. D.8、一次函数,,且随的增大而减小,则其图象可能是( )A. B.C. D.9、已知一次函数y1=kx+1和y2=x﹣2.当x<1时,y1>y2,则k的值可以是( )A.-3 B.-1 C.2 D.410、若实数、满足且,则关于的一次函数的图像可能是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一次函数y=﹣2x+7的图象不经过第 _____象限.2、函数y=(m﹣2)x|m﹣1|+2是一次函数,那么m的值为___.3、观察图象可以发现:①直线y=x,y=3x向右逐渐______,即y的值随x的增大而增大;②直线y=-x,y=-4x向右逐渐______,即y的值随x的增大而减小. 4、在平面直角坐标系xOy中,过点A(5,3)作y轴的平行线,与x轴交于点B,直线y=kx+b(k,b为常数,k≠0)经过点A且与x轴交于点C(9,0).我们称横、纵坐标都是整数的点为整点.(1)记线段AB,BC,CA围成的区域(不含边界)为W.请你结合函数图象,则区域W内的整点个数为______;(2)将直线y=kx+b向下平移n个单位(n≥0),若平移后的直线与线段AB,BC围成的区域(不含边界)存在整点,请结合图象写出n的取值范围______.5、在直角坐标系中,等腰直角三角形、、、、按如图所示的方式放置,其中点、、、、均在一次函数的图象上,点、、、、均在轴上.若点的坐标为,点的坐标为,则点的坐标为___.三、解答题(5小题,每小题10分,共计50分)1、如图,直线l:与y轴交于点G,直线l上有一动点P,过点P作y轴的平行线PE,过点G作x轴的平行线GE,它们相交于点E.将△PGE沿直线l翻折得到△PGE′,点E的对应点为E′.(1)如图1,请利用无刻度的直尺和圆规在图1中作出点E的对应点E′;(2)如图2,当点E的对应点E′落在x轴上时,求点P的坐标;(3)如图3,直线l上有A,B两点,坐标分别为(-2,-6),(4,6),当点P从点A运动到点B的过程中,点E′也随之运动,请直接写出点E′的运动路径长为____________.2、经开区某中学计划举行一次知识竞赛,并对获奖的同学给予奖励.现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.(1)求甲、乙两种奖品的单价;(2)根据颁奖计划,该中学需甲、乙两种奖品共60件,且甲种奖品不少于乙种奖品的一半,应如何购买才能使总费用最少?并求出最少费用.3、已知一次函数图象与直线平行且过点.(1)求一次函数解析式;(2)若(1)中一次函数图象,分别与、轴交于、两点,求、两点坐标;(3)若点在轴上,且,求点坐标.4、已知一次函数的图象与轴交于点,与轴交于点(1)求、两点的坐标;(2)画出函数的图象5、为巩固拓展脱贫攻坚成果,开启乡村振兴发展之门,某村村民组长组织村民加工板栗并进行销售.根据现有的原材料,预计加工规格相同的普通板栗、精品板栗共4000件.某天上午的销售件数和所卖金额统计如下表: 普通板栗(件)精品板栗(件)总金额(元)甲购买情况23350乙购买情况41300(1)求普通板栗和精品板栗的单价分别是多少元.(2)根据(1)中求出的单价,若普通板栗和精品板栗每件的成本分别为40元、60元,且加工普通板栗a件(),则4000件板栗的销售总利润为w元.问普通板栗和精品板栗各加工多少件,所获总利润最多?最多总利润是多少? -参考答案-一、单选题1、C【解析】【分析】求出点A、点坐标,求出长即可求出点的坐标.【详解】解:当x=0时,,点B的坐标为(0,-1);当y=0时,,解得,,点A的坐标为(2,0);即,,;以点为圆心、长为半径画弧,与轴正半轴交于点,故,则,点C的坐标为;故选:C【点睛】本题考查了一次函数与坐标轴交点坐标和勾股定理,解题关键是求出一次函数与坐标轴交点坐标,利用勾股定理求出线段长.2、B【解析】【分析】由题意得,则销售价超过100元,超过的部分为,即可得.【详解】解:∵,∴销售价超过100元,超过的部分为,∴(且为整数),故选B.【点睛】本题考查了一次函数的应用,解题的关键是理解题意,找出等量关系.3、A【解析】【分析】y>0即是图象在x轴上方,找出这部分图象上点对应的横坐标范围即可.【详解】解:∵一次函数y=f(x)的图象经过点(2,0),∴如果y>0,则x<2,故选:A.【点睛】本题考查一次函数的图象,数形结合是解题的关键.4、A【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1>x2即可得出结论.【详解】∵正比例函数y=3x中,k=3>0,∴y随x的增大而增大,∵x1>x2,∴y1>y2.故选:A.【点睛】本题考查的是一次函数图象上点的坐标特征,熟练掌握正比例函数的增减性与x的系数的关系是解题的关键.5、B【解析】【分析】根据一次函数解析式中的值,判断函数的图象所在象限,即可得出结论.【详解】解:一次函数中,,∴函数图象经过一二四象限∵在一次函数中,,∴直线经过一二三象限函数图象如图∴直线与的交点在第二象限故选:.【点睛】本题考查的一次函数,解题的关键在于熟练掌握一次函数的图象与系数的关系.6、A【解析】【分析】由知直线必过,据此求解可得.【详解】解:,当时,,则直线必过,如图满足条件的大致图象是:故选:A.【点睛】本题主要考查一次函数的图象,解题的关键是掌握一次函数的图象性质:①当,时,图象过一、二、三象限;②当,时,图象过一、三、四象限;③当,时,图象过一、二、四象限;④当,时,图象过二、三、四象限.7、A【解析】【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.【详解】解:作AD∥x轴,作CD⊥AD于点D,如图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOB=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).故选:A.【点睛】本题考查动点问题的函数图象,全等三角形的性质和判定,等腰三角形的定义.解题的关键是明确题意,建立相应的函数关系式,根据函数关系式判断出正确的函数图象.8、B【解析】【分析】根据一次函数的图象是随的增大而减小,可得,再由,可得,即可求解.【详解】解:一次函数的图象是随的增大而减小,∴ ,;又,,一次函数的图象经过第二、三、四象限.故选:B【点睛】本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.9、B【解析】【分析】先求出不等式的解集,结合x<1,即可得到k的取值范围,即可得到答案.【详解】解:根据题意,∵y1>y2,∴,解得:,∴,∴;,∵当x<1时,y1>y2,∴∴,∴;∴k的值可以是-1;故选:B.【点睛】本题考查了一次函数的图像和性质,解一元一次不等式,解题的关键是掌握一次函数的性质进行计算.10、B【解析】【分析】根据实数、满足可知,、互为相反数,再根据,可确定、的符号,进而确定图象的大致位置.【详解】解:∴实数、满足,∴、互为相反数,∵,∴,,∴∴一次函数的图像经过二、三、四象限,故选:B.【点睛】本题考查了一次函数图象的性质,解题关键是根据已知条件,确定、的符号.二、填空题1、三【解析】【分析】先根据一次函数y=﹣2x+7判断出k、b的符号,再根据一次函数的性质进行解答即可.【详解】解:∵一次函数y=﹣2x+7中,k=﹣2<0,b=7>0,∴此函数的图象经过第一、二、四象限,∴此函数的图象不经过第三象限.故答案为:三.【点睛】本题考查了一次函数图象与系数的关系:对于y=kx+b(k为常数,k≠0),当k>0,b>0,y=kx+b的图象在一、二、三象限;当k>0,b<0,y=kx+b的图象在一、三、四象限;当k<0,b>0,y=kx+b的图象在一、二、四象限;当k<0,b<0,y=kx+b的图象在二、三、四象限.2、0【解析】【分析】根据一次函数的定义,列出关于m的方程和不等式进行求解即可.【详解】解:由题意得,|m-1|=1且m-2≠0,解得:m=2或m=0且m≠2,∴m=0.故答案为:0.【点睛】本题主要考查了一次函数,一次函数y=kx+b的条件是:k、b为常数,k≠0,自变量次数为1.3、 上升 下降【解析】略4、 3 ≤n<【解析】【分析】(1)根据题意和图象,可以得到区域W内的整点个数;(2)根据直线y=kx+b过点A和点C,从而可以得到直线的表达式是y=-x+,设平移后的直线解析式是y=-x+m,分别代入(6,2)、(6,1)求得m的值,结合图象即可求得.【详解】解:(1)由图象可得,区域W内的整点的坐标分别为(6,1),(6,2),(7,1),即区域W内的整点个数是3个,故答案为:3;(2)∵直线y=kx+b过点A(5,3),点C(9,0),∴,∴,即直线y=kx+b的表达式是y=﹣x+,设平移后的直线解析式是y=﹣x+m,把(6,2)代入得,2=﹣+m,解得m=,则﹣=,把(6,1)代入得,1=﹣+m,解得m=,则﹣=,由图象可知,将直线y=kx+b向下平移n个单位(n≥0),若平移后的直线与线段AB,BC围成的区域(不含边界)存在整点,请结合图象写出n的取值范围≤n<.故答案为:≤n<.【点睛】本题考查了一次函数图象与几何变换、待定系数法求一次函数解析式,解答本题的关键是明确题意,利用数形结合的思想解答.5、【解析】【分析】首先,根据等腰直角三角形的性质求得点A1、A2的坐标;然后,将点A1、A2的坐标代入一次函数解析式,利用待定系数法求得该直线方程是y=x+1;最后,利用等腰直角三角形的性质推知点Bn-1的坐标,然后将其横坐标代入直线方程y=x+1求得相应的y值,从而得到点An的坐标.【详解】解:如图,点的坐标为,点的坐标为,,,则.△是等腰直角三角形,,.点的坐标是.同理,在等腰直角△中,,,则.点、均在一次函数的图象上,,解得,,该直线方程是.点,的横坐标相同,都是3,当时,,即,则,.同理,,,,当时,,即点的坐标为,.故答案为,.【点睛】本题考查了一次函数图象上点的坐标特点,涉及到的知识点有待定系数法求一次函数解析式,一次函数图象上点的坐标特征以及等腰直角三角形的性质.解答该题的难点是找出点Bn的坐标的规律.三、解答题1、 (1)见解析(2)(3)6【解析】【分析】(1)作出过点E的l的垂线即可解决;(2)设直线l交x轴于点D,则由直线解析式可求得点D、点G的坐标,从而可得OD的长.由对称性及平行可得,设点P的坐标为(a,2a-2),则可得点E的坐标,由及勾股定理可求得点的坐标;(3)分别过点A、B作y轴的平行线,与过点G的垂直于y轴的直线分别交于点C、M,则点E在线段CM上运动,根据对称性知,点运动路径的长度等于CM的长,故只要求得CM的长即可,由A、B两点的坐标即可求得CM的长.(1)所作出点E的对应点E′如下图所示:(2)设直线l交x轴于点D在y=2x-2中,令y=0,得x=1;令x=0,得y=-2则点D、点G的坐标分别为(1,0)、(0,-2)∴OD=1,OG=2由对称性的性质得:,∵GE∥x轴∴∴∴∴设点P的坐标为(a,2a-2),其中a>0,则可得点E的坐标为(a,-2)∴EG=a∴∴在Rt△中,由勾股定理得:解得:当时,所以点P的坐标为(3)分别过点A、B作y轴的平行线,与过点G的垂直于y轴的直线分别交于点C、M,则点E在线段CM上运动,根据对称性知,点运动路径的长度等于CM的长∵A,B两点的坐标分别为(-2,-6),(4,6)∴CM=4-(-2)=6则点运动路径的长为6故答案为:6【点睛】本题主要考查了一次函数的图象与性质、折叠的性质、尺规作图等知识,一次函数的性质及折叠的性质的应用是本题的关键.2、 (1)甲种奖品的单价为20元/件,乙种奖品的单价为10元/件;(2)当学习购买20件甲种奖品、40件乙种奖品时,总费用最少,最少费用是800元.【解析】【分析】(1)设甲种奖品的单价为x元/件,乙种奖品的单价为y元/件,根据“购买1件甲种奖品和2件乙种奖品共需40元,购买2件甲种奖品和3件乙种奖品共需70元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买甲种奖品m件,则购买乙种奖品(60-m)件,设购买两种奖品的总费用为w,由甲种奖品的数量不少于乙种奖品数量的一半,可得出关于m的一元一次不等式,解之可得出m的取值范围,再由总价=单价×数量,可得出w关于m的函数关系式,利用一次函数的性质即可解决最值问题.(1)设甲种奖品的单价为x元/件,乙种奖品的单价为y元/件,依题意,得:,解得,答:甲种奖品的单价为20元/件,乙种奖品的单价为10元/件.(2)设购买甲种奖品m件,则购买乙种奖品(60-m)件,设购买两种奖品的总费用为w元,∵甲种奖品的数量不少于乙种奖品数量的一半,∴m≥(60-m),∴m≥20.依题意,得:w=20m+10(60-m)=10m+600,∵10>0,∴w随m值的增大而增大,∴当学校购买20件甲种奖品、40件乙种奖品时,总费用最少,最少费用是800元.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于m的一次函数关系式.3、 (1)(2),(3)或【解析】【分析】(1)由一次函数图象平移的性质得到k=2,再将点代入求出解析式;(2)分别求出y=0及x=0时的对应值,即可得到A、两点坐标;(3)由结合三角形的面积公式得到AP=2AO,即可得到点P坐标.(1)解:设一次函数的解析式为,一次函数图象与直线平行,,过点,∴,,一次函数解析式为;(2)解:把代入得,,,,把x=0代入得,,;(3)解:∵,,AP=2AO=2,-1-2=-3,-1+2=1,或.【点睛】此题考查了一次函数平移的性质,一次函数图象与坐标轴的交点坐标,一次函数与图形面积问题,正确掌握一次函数的综合知识是解题的关键.4、 (1),(2)见解析【解析】【分析】(1)分别令,即可求得点的坐标;(2)根据两点,作出一次函数的图象即可(1)令,则,即,令,则,即(2)过,作直线的图象,如图所示,【点睛】本题考查了一次函数与坐标轴的交点问题,画一次函数图象,掌握一次函数的性质是解题的关键.5、 (1)普通板栗的单价为55元,精品板栗的单价为80元;(2)普通板栗加工1000件,精品板栗加工3000件,所获总利润最多,最多总利润是75000元.【解析】【分析】(1)设普通板栗的单价为x元,精品板栗的单价为y元,根据表格列出二元一次方程组,求解即可得;(2)加工普通板栗a件,则加工精品板栗件,根据题意可得利润的函数关系式,根据一次函数的性质及自变量的取值范围可得当时,所获总利润w最多,代入求解即可得.(1)解:设普通板栗的单价为x元,精品板栗的单价为y元,由题意得:,解得,答:普通板栗的单价为55元,精品板栗的单价为80元;(2)解:加工普通板栗a件,则加工精品板栗件,由题意得:,∵,,∴当时,所获总利润w最多,,∴,答:普通板栗加工1000件,精品板栗加工3000件,所获总利润最多,最多总利润是75000元.【点睛】题目主要考查二元一次方程组的应用及一次函数的最大利润问题,理解题意,列出方程及函数解析式是解题关键.
相关试卷
这是一份数学八年级下册第二十一章 一次函数综合与测试一课一练,共26页。试卷主要包含了下列函数中,属于正比例函数的是等内容,欢迎下载使用。
这是一份数学八年级下册第二十一章 一次函数综合与测试测试题,共23页。试卷主要包含了点A,一次函数的大致图象是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试测试题,共27页。试卷主要包含了已知点,点A等内容,欢迎下载使用。