|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年冀教版八年级数学下册第二十一章一次函数综合练习试卷(精选)
    立即下载
    加入资料篮
    2022年冀教版八年级数学下册第二十一章一次函数综合练习试卷(精选)01
    2022年冀教版八年级数学下册第二十一章一次函数综合练习试卷(精选)02
    2022年冀教版八年级数学下册第二十一章一次函数综合练习试卷(精选)03
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后练习题

    展开
    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后练习题,共31页。试卷主要包含了已知等内容,欢迎下载使用。

    八年级数学下册第二十一章一次函数综合练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、当时,直线与直线的交点在( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    2、甲、乙两地相距120千米,A车从甲地到乙地,B车从乙地到甲地,A车的速度为60千米/小时,B车的速度为90千米/小时,A,B两车同时出发.设A车的行驶时间为x(小时),两车之间的路程为y(千米),则能大致表示y与x之间函数关系的图象是(  )
    A.B.
    C. D.
    3、若点,都在一次函数的图象上,则与的大小关系是( )
    A. B. C. D.
    4、已知、两点,在轴上存在点使得的值最小,则点的坐标为( )
    A. B. C. D.
    5、甲、乙两个工程队分别同时开挖两段河集,所挖河架的长度(m)与挖掘时同(h)之间的关系如图所示,根据图像所提供的信息,下列说法正确的是( )

    A.甲队的挖掘速度大于乙队的挖掘速度
    B.开挖2h时,甲、乙两队所挖的河渠的长度相差8m
    C.乙队在的时段,与之间的关系式为
    D.开挖4h时,甲、乙两队所挖的河渠的长度相等
    6、如图,一次函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4,则下列说法正确的个数是(  )

    ①对于函数y=ax+b来说,y随x的增大而减小;②函数y=ax+d不经过第一象限;③方程ax+b=cx+d的解是x=4;④ d-b=4(a-c).
    A.1 B.2 C.3 D.4
    7、已知点,都在直线上,则与的大小关系为( )
    A. B. C. D.无法比较
    8、如图,已知直线与轴交于点,与轴交于点,以点为圆心、长为半径画弧,与轴正半轴交于点,则点的坐标为( )

    A. B. C. D.
    9、已知一次函数,其中y的值随x值的增大而减小,若点A在该函数图象上,则点A的坐标可能是( )
    A. B. C. D.
    10、已知点(﹣1,y1),(4,y2)在一次函数y=3x+a的图象上,则y1,y2的大小关系是(  )
    A.y1<y2 B.y1=y2 C.y1>y2 D.不能确定
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、一次函数 y=2x+3 的图象经过第____________象限,y随x的增大而______ ,与y轴交点坐标为_________.
    2、将直线沿轴向上平移2个单位长度后的直线所对应的函数表达式是__________.
    3、已知点A(-2,a),B(3,b)在直线y=2x+3上,则a___b.(填“>”“<”或“=”号)
    4、一般地,形如y=kx+b(k≠0,k、b为常数)的函数,叫做______函数.注意:k是常数,k≠0,k可以是正数、也可以是负数;b可以取______ .
    5、如图,直线y=kx+b交坐标轴于A,B两点,则关于x的不等式kx+b<0的解集是_____.

    三、解答题(5小题,每小题10分,共计50分)
    1、平面直角坐标系中,已知直线l1经过原点与点P(m,2m),直线l2:y=mx+2m﹣3(m≠0).
    (1)求证:点(﹣2,﹣3)在直线l2上;
    (2)当m=2时,请判断直线l1与l2是否相交?
    2、已知A,B两地相距的路程为12km,甲骑自行车从A地出发前往B地,同时乙步行从B地出发前往A地,如图的折线OCD和线段EF,分别表示甲、乙两人与A地的路程y甲、y乙与他们所行时间x(h)之间的函数关系,且OC与EF相交于点P.

    (1)求y乙与x的函数关系式以及两人相遇地点P与A地的路程;
    (2)求线段OC对应的y甲与x的函数关系式;
    (3)求经过多少h,甲、乙两人相距的路程为6km.
    3、如图,在平面直角坐标系中,点为坐标原点,直线分别交轴、轴于点、,经过点的直线交轴于点.

    (1)求点的坐标;
    (2)动点在射线上运动,过点作轴,垂足为点,交直线于点,设点的横坐标为.线段的长为.求关于的函数解析式,并直接写出自变量的取值范围;
    (3)在(2)的条件下,当点在线段上时,连接,若,在线段上取一点.连接,使,问在轴上是否存在点,使是以为直角的直角三角形?若存在,请求出点的坐标;若不存在,请说明理由.
    4、-辆货车从甲地到乙地,一辆轿车从乙地到甲地,两车沿同一条公路分别从甲、乙两地同时出发,匀速行驶.已知轿车比货车每小时多行驶20km;两车相遇后休息了24分钟,再同时继续行驶,设两车之间的距离为y(km),货车行驶时间为x(h),请结合图像信息解答下列问题:

    (1)货车的速度为______km/h,轿车的速度为______km/h;
    (2)求y与x之间的函数关系式(写出x的取值范围),并把函数图像画完整;
    (3)货车出发______h,与轿车相距30km.
    5、在平面直角坐标系中,已知点A(4,0),点B(0,3).点P从点A出发,以每秒1个单位的速度向右平移,点Q从点B出发,以每秒2个单位的速度向右平移,又P、Q两点同时出发.

    (1)连接AQ,当△ABQ是直角三角形时,则点Q的坐标为 ;
    (2)当P、Q运动到某个位置时,如果沿着直线AQ翻折,点P恰好落在线段AB上,求这时∠AQP的度数;
    (3)若将AP绕点A逆时针旋转,使得P落在线段BQ上,记作P',且AP'∥PQ,求此时直线PQ的解析式.

    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    根据一次函数解析式中的值,判断函数的图象所在象限,即可得出结论.
    【详解】
    解:一次函数中,,
    ∴函数图象经过一二四象限
    ∵在一次函数中,,
    ∴直线经过一二三象限
    函数图象如图

    ∴直线与的交点在第二象限
    故选:.
    【点睛】
    本题考查的一次函数,解题的关键在于熟练掌握一次函数的图象与系数的关系.
    2、C
    【解析】
    【分析】
    分别求出两车相遇、B车到达甲地、A车到达乙地时间,分0≤x≤、<x≤、<x≤2三段求出函数关系式,进而得到当x=时,y=80,结合函数图象即可求解.
    【详解】
    解:当两车相遇时,所用时间为120÷(60+90)=小时,
    B车到达甲地时间为120÷90=小时,
    A车到达乙地时间为120÷60=2小时,
    ∴当0≤x≤时,y=120-60x-90x=-150x+120;
    当<x≤时,y=60(x-)+90(x-)=150x-120;
    当<x≤2是,y=60x;
    由函数解析式的当x=时,y=150×-120=80.
    故选:C
    【点睛】
    本题考查了一次函数的应用,理解题意,确定分段函数的解析式,并根据函数解析式确定函数图象是解题关键.
    3、A
    【解析】
    【分析】
    根据k>0时,y随x的增大而增大,进行判断即可.
    【详解】
    解:∵点,都在一次函数的图象上,
    ∴y随x的增大而增大


    故选A
    【点睛】
    本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是牢记
    “当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小”.
    4、B
    【解析】
    【分析】
    解:作点A关于y轴的对称点C,得C(-1,-1),直线AC与y轴交点即为点P,此时的值最小,求出直线BC的函数解析式,令x=0时得y的值即为点P的坐标.
    【详解】
    解:作点A关于y轴的对称点C,得C(-1,-1),直线AC与y轴交点即为点P,此时的值最小,
    设直线BC的函数解析式为y=kx+b,将、C(-1,-1)代入,得
    ,解得,
    ∴直线BC的函数解析式为y=x+,
    当x=0时,得y=,
    ∴P(0,).
    故选:B.
    【点睛】
    此题考查了轴对称求最短路径,求一次函数解析式,一次函数图象与坐标轴交点坐标,正确掌握利用轴对称知识解决最短路径问题是解题的关键.
    5、D
    【解析】
    【分析】
    根据图象依次分析判断.
    【详解】
    解:甲队的挖掘速度在2小时前小于乙队的挖掘速度,2小时后大于乙队的速度,故选项A不符合题意;
    开挖2h时,乙队所挖的河渠的长度为30m,
    甲队每小时挖=10m,故2h时,甲队所挖的河渠的长度为20m,
    开挖2h时,甲、乙两队所挖的河渠的长度相差30-20=10m,故选项B不符合题意;
    由图象可知,乙队2小时前后的挖掘速度发生了改变,故选项C不符合题意;
    甲队开挖4h时,所挖河渠的长度为,
    乙队开挖2小时后的函数解析式为,当开挖4h时,共挖40m,故选项D符合题意;
    故选:D.
    【点睛】
    此题考查了一次函数的图象,利用图象得到所需信息,能读懂函数图象并结合所得信息进行计算是解题的关键.
    6、C
    【解析】
    【分析】
    仔细观察图象:①观察函数图象可以直接得到答案;
    ②观察函数图象可以直接得到答案;
    ③根据函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4可以得到答案;
    ④根据函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4可以得到答案.
    【详解】
    解:由图象可得,对于函数y=ax+b来说,y随x的增大而减小故①正确;
    函数y=ax+d图象经过第一,三,四象限,即不经过第二象限,故②不正确,
    一次函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4,所以方程ax+b=cx+d的解是x=4;故③正确;
    ∵一次函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4,
    ∴4a+b=4c+d
    ∴d-b=4(a-c),故④正确.
    综上所述,正确的结论有3个.
    故选:C.
    【点睛】
    本题主要考查了一次函数的图象与性质,利用数形结合是解题的关键.
    7、A
    【解析】
    【分析】
    根据一次函数的增减性分析,即可得到答案.
    【详解】
    ∵直线上,y随着x的增大而减小
    又∵

    故选:A.
    【点睛】
    本题考查了一次函数的增减性;解题的关键是熟练掌握一次函数图像的性质,从而完成求解.
    8、C
    【解析】
    【分析】
    求出点A、点坐标,求出长即可求出点的坐标.
    【详解】
    解:当x=0时,,点B的坐标为(0,-1);当y=0时,,解得,,点A的坐标为(2,0);
    即,,;
    以点为圆心、长为半径画弧,与轴正半轴交于点,
    故,则,
    点C的坐标为;
    故选:C
    【点睛】
    本题考查了一次函数与坐标轴交点坐标和勾股定理,解题关键是求出一次函数与坐标轴交点坐标,利用勾股定理求出线段长.
    9、D
    【解析】
    【分析】
    先判断 再利用待定系数法求解各选项对应的一次函数的解析式,即可得到答案.
    【详解】
    解: 一次函数,其中y的值随x值的增大而减小,

    当时,则 解得,故A不符合题意,
    当时,则 解得 故B不符合题意;
    当时,则 解得 故C不符合题意;
    当时,则 解得 故D符合题意;
    故选D
    【点睛】
    本题考查的是一次函数的性质,利用待定系数法求解一次函数的解析式,掌握“利用待定系数法求解一次函数的解析式”是解本题的关键.
    10、A
    【解析】
    【分析】
    根据一次函数y=3x+a的一次项系数k>0时,函数值随自变量的增大而增大的性质来求解即可.
    【详解】
    解:∵一次函数y=3x+a的一次项系数为3>0,
    ∴y随x的增大而增大,
    ∵点(﹣1,y1),(4,y2)在一次函数y=3x+a的图象上,﹣1<4,
    ∴y1<y2,
    故选:A.
    【点睛】
    本题考查了一次函数的性质,掌握,时,随的增大而增大是解题的关键.
    二、填空题
    1、 一,二,三 增大 (0,3)
    【解析】

    2、
    【解析】
    【分析】
    根据一次函数的平移规律:“上加下减常数项,左加右减自变量”,可知将函数沿着y轴向上平移2个单位长度,就是给原一次函数常数项后加2,化简后即可得到答案.
    【详解】
    根据一次函数的平移规律:“上加下减常数项,左加右减自变量”,可知将函数沿着y轴向上平移2个单位长度,就是给原一次函数常数项后加2,则变化后的函数解析式应变为:,化简后结果为: ,
    故答案为:.
    【点睛】
    本题考查一次函数的图像变化与函数解析式变化之间的规律,熟练掌握并应用变化规律是解决本题的关键.
    3、<
    【解析】
    【分析】
    根据一次函数的解析式可得到函数的增减性,则可比较a、b的大小.
    【详解】
    解:∵在y=2x+3中,k=2>0,
    ∴y随x的增大而增大,
    ∵点A(−2,a),B(3,b)在直线y=2x+3上,且−2<3,
    ∴a<b,
    故答案为:<.
    【点睛】
    本题主要考查一次函数的性质,掌握一次函数的增减性是解题的关键,即在y=kx+b中,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.
    4、 一次 任意实数
    【解析】

    5、x<-2
    【解析】
    【分析】
    根据图象,找出在x轴下方的函数图象所对应的自变量的取值即可得答案.
    【详解】
    ∵点A坐标为(-2,0),
    ∴关于x的不等式kx+b<0的解集是x<-2,
    故答案为:x<-2
    【点睛】
    本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合;熟练掌握函数图象法是解题关键.
    三、解答题
    1、 (1)见解析
    (2)直线l1与l2不相交
    【解析】
    【分析】
    (1)将所给点代入直线中,看等式是否成立,再判断该点是否在直线上;
    (2)求出解析式与比较,发现系数相同,故不可能相交.
    【详解】
    (1)把x=﹣2代入y=mx+2m﹣3得,y=﹣2m+2m﹣3=﹣3,
    ∴点(﹣2,﹣3)在直线l2上;
    (2)∵直线l1经过原点与点P(m,2m),
    ∴直线l1为y=2x,
    当m=2时,则直线l2:y=2x+1,
    ∵x的系数相同,
    ∴直线l1与l2不相交.
    【点睛】
    本题考查平面直角坐标系中的直线解析式求法、点是否在直线上的判断、两直线是否相交,掌握这些是解题关键.
    2、 (1),9km
    (2)
    (3)经过小时或1小时,甲、乙两人相距6km.
    【解析】
    【分析】
    (1)根据题意和函数图象中的数据,可以得到y乙与x的函数关系式以及两人相遇地点与A地的距离;
    (2)根据函数图象中的数据,可以计算出线段OP对应的y甲与x的函数关系式;
    (3)根据(1)和(2)中的结果,分两种情况讨论,可以得到经过多少小时,甲、乙两人相距6km.
    (1)
    解:设y乙与x的函数关系式是,
    ∵点E(0,12),F(2,0)在函数y乙=kx+b的图象上,
    ∴ ,解得 ,
    即y乙与x的函数关系式是,
    当x=0.5时,,
    即两人相遇地点P与A地的距离是9km;
    (2)
    解:设线段OC对应的y甲与x的函数关系式是y甲=ax,
    ∵点(0.5,9)在函数y甲=ax的图象上,
    ∴9=0.5a, 解得a=18,
    即线段OP对应的y甲与x的函数关系式是y甲=18x;
    (3)
    解:①令 即

    解得:或
    甲从A地到达B地的时间为:小时,
    经检验:不符合题意,舍去,
    ②当甲到达B地时,乙离B地6千米所走时间为:
    (小时),
    综上所述,经过小时或1小时,甲、乙两人相距6km.
    【点睛】
    本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.其中第三问要注意进行分类讨论.
    3、 (1)
    (2)
    (3)存在,,
    【解析】
    【分析】
    (1)先由直线分别交轴、轴于点、,求出点、的坐标,再根据直线经过点,求出的值,得到直线的解析式,令,得到关于的一元一次方程,求出的值即为点的横坐标;
    (2)由轴于点,交直线于点,且点的横坐标为,得,,再按点在轴的左侧及点在轴的右侧分别求出关于的函数解析式及相应的的取值范围即可;
    (3)连接,设交轴于点,作轴于点,先证明,根据勾股定理及面积等式求出点的坐标,再证明,求出直线的解析式,令,得到关于的一元一次方程,解方程求出的值即为点的横坐标.
    (1)
    直线,当时,;
    当时,则,
    解得,
    ,,
    直线经过点,

    直线的解析式为,
    当时,则,
    解得,

    (2)
    轴于点,交直线于点,且点的横坐标为,
    ,,
    如图1,点在轴的左侧,则,
    ∵PQ=-t+4-(2t+4)=-3t,

    如图2,点在轴的右侧,则,


    综上所述,关于的函数解析式为.

    (3)
    存在,
    如图3,连接,交轴于点,,作轴于点,
    点在线段上,且,
    12×(-3t)(4-t)=152,
    整理得或(不符合题意,舍去),
    ,,
    点为的中点,




    ∵∠BPM+2∠ABO=90°,


    ,,,
    ∴OP=22+12=5,



    ∴(55OF)2+(5)2=OF2,
    解得,

    设直线的解析式为,则,
    解得,
    直线的解析式为,
    由得,

    设直线的解析式为,则,
    解得,
    直线的解析式为,

    ∴MR//OP,
    设直线的解析式为,则,
    解得,
    直线的解析式为,
    当时,则,
    解得,
    点的坐标为,.

    【点睛】
    此题重点考查一次函数的图象与性质、用待定系数法求函数解析式、用解方程组的方法求函数图象的交点坐标、直角三角形斜边上的中线等于斜边的一半、勾股定理等知识与方法,综合运用以上知识是解题的关键.
    4、 (1)80,100
    (2)当时,;当时,;当时,;当时,,图见解析
    (3)或
    【解析】
    【分析】
    (1)结合图象可得经过两个小时,两车相遇,设货车的速度为,则轿车的速度为,根据题意列出方程求解即可得;
    (2)分别求出各个时间段的函数解析式,然后再函数图象中作出相应直线即可;
    (3)将代入(2)中各个时间段的函数解析式,求解,同时考虑解是否在相应时间段内即可.
    (1)
    解:由图象可得:经过两个小时,两车相遇,
    设货车的速度为,则轿车的速度为,
    ∴,
    解得:,,
    ∴货车的速度为,则轿车的速度为,
    故答案为:80;100;
    (2)
    当时,图象经过,点,
    设直线解析式为:,代入得:

    解得:,
    ∴当时,;
    分钟小时,
    ∵两车相遇后休息了24分钟,
    ∴当时,;
    当时,轿车距离甲地的路程为:,货车距离乙地的路程为:,
    轿车到达甲地还需要:,
    货车到达乙地还需要:,
    ∴当时,;
    当时,;
    当时,;
    当时,;
    当时,;
    ∴函数图象分别经过点,,,
    作图如下:

    (3)
    ①当时,令可得:

    解得:;
    ②当时,令可得:

    解得:;
    ③当时,令可得:

    解得::,不符合题意,舍去;
    综上可得:货车出发或,与轿车相距30km,
    故答案为:或.
    【点睛】
    题目主要考查一元一次方程的应用,一次函数的应用,利用待定系数法确定一次函数解析式,作函数图象等,理解题意,熟练掌握运用一次函数的基本性质是解题关键.
    5、 (1)(,3)或(4,3)
    (2)45°
    (3)y=-x+
    【解析】
    【分析】
    (1)是直角三角形,分两种情况:①,,轴,进而得出点坐标;②,,如图过点Q作,垂足为C,在中,由勾股定理知,设,在中,由勾股定理知,在中,由勾股定理知,有,求解x的值,即的长,进而得出点坐标;
    (2)如图,点P翻折后落在线段AB上的点E处,由翻折性质和可得,,,,点E是AB的中点,过点E作EF⊥BQ于点F,EM⊥AO于点M,过点Q作QH⊥OP于点H, 可证,求出EF的值,的值,有,用证明,知,,进而可求的值;
    (3)如图,由旋转的性质可知,,证,可知,,过点A作AG⊥BQ于G,设,则,在中,,由勾股定理得,解得的值,进而求出点的坐标,设过点的直线解析式为,将两点坐标代入求解即可求得解析式.
    (1)
    解:∵是直角三角形,点,点
    ∴①当时,
    ∵轴
    ∴点坐标为;
    ②当时,,如图过点Q作,垂足为C

    在中,由勾股定理知
    设,在中,由勾股定理知
    在中,由勾股定理知

    解得


    ∴点坐标为;
    综上所述,点坐标为或.
    (2)
    解:如图,点P翻折后落在线段AB上的点E处,


    又∵




    ∴点E是AB的中点
    过点E作EF⊥BQ于点F,EM⊥AO于点M,过点Q作QH⊥OP于点H,
    在和中
    ∵∠AEM=∠BEF∠EMA=∠EFBAE=BE


    ∴EF=


    在和中




    ∴.
    (3)
    解:如图

    由旋转的性质可知


    在和中
    ∠P'QA=∠PAQAQ=QA∠P'AQ=∠PQA



    过点A作AG⊥BQ于G


    在中,,由勾股定理得
    解得

    ∴点的坐标分别为
    设过点的直线解析式为
    将两点坐标代入得
    解得:
    ∴过点的直线解析式为.
    【点睛】
    本题考查了翻折的性质,三角形全等,勾股定理,一次函数等知识.解题的关键在于将知识灵活综合运用.

    相关试卷

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试精练: 这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试精练,共31页。试卷主要包含了如图,一次函数y=kx+b等内容,欢迎下载使用。

    初中数学第二十一章 一次函数综合与测试同步达标检测题: 这是一份初中数学第二十一章 一次函数综合与测试同步达标检测题,共27页。试卷主要包含了点A,已知点,都在直线上,则,已知是一次函数,则m的值是等内容,欢迎下载使用。

    冀教版八年级下册第二十一章 一次函数综合与测试练习题: 这是一份冀教版八年级下册第二十一章 一次函数综合与测试练习题,共27页。试卷主要包含了已知正比例函数的图像经过点等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map