考点07分式方程(解析版)-2022年数学中考一轮复习考点透析(华师大版)
展开考点07分式方程
考点总结
知识点一:分式方程及其解法 | 关键点拨及对应举例 | |
1.定义 | 分母中含有未知数的方程叫做分式方程. | 例:在下列方程中,①;②;③,其中是分式方程的是③. |
2.解分式方程 |
基本思路:分式方程 整式方程
| 例:将方程转化为整式方程可得:1-2=2(x-1). |
解法步骤: (1)去分母,将分式方程化为整式方程; (2)解所得的整式方程; (3) 检验:把所求得的x的值代入最简公分母中,若最简公分母为0,则应舍去. | ||
3.增根 | 使分式方程中的分母为0的根即为增根. | 例:若分式方程有增根,则增根为1. |
知识点二 :分式方程的应用 | ||
4.列分式方程解应用题的一般步骤 | (1)审题;(2)设未知数;(3) 列分式方程;(4)解分式方程;(5)检验: (6)作答. | 在检验这一步中,既要检验所求未知数的值是不是所列分式方程的解,又要检验所求未知数的值是不是符合题目的实际意义. |
真题演练
一、单选题
1.(2021·山东淄博·中考真题)甲、乙两人沿着总长度为的“健身步道”健步走,甲的速度是乙的1.2倍,甲比乙提前12分钟走完全程.设乙的速度为,则下列方程中正确的是( )
A. B. C. D.
【答案】D
【分析】
根据题意可直接进行求解.
【详解】
解:由题意得:;
故选D.
2.(2021·山东临沂·中考真题)某工厂生产、两种型号的扫地机器人.型机器人比型机器人每小时的清扫面积多50%;清扫所用的时间型机器人比型机器人多用40分钟. 两种型号扫地机器人每小时分别清扫多少面积?若设型扫地机器人每小时清扫,根据题意可列方程为( )
A. B.
C. D.
【答案】D
【分析】
根据清扫100m2所用的时间A型机器人比B型机器人多用40分钟列出方程即可.
【详解】
解:设A型扫地机器人每小时清扫xm2,
由题意可得:,
故选D.
3.(2020·山东枣庄·中考真题)对于实数、,定义一种新运算“”为:,这里等式右边是实数运算.例如:.则方程的解是( )
A. B. C. D.
【答案】B
【分析】
根据题中的新运算法则表达出方程,再根据分式方程的解法解答即可.
【详解】
解:
∴方程表达为:
解得:,
经检验,是原方程的解,
故选:B.
4.(2021·山东淄川·一模)方程的解为( )
A. B. C. D.
【答案】C
【分析】
根据分式方程的求解步骤求解即可,注意验证x-1.
【详解】
解:去分母得2−x-2=3x−3,
合并同类项得4x=3,
解得x=,
经检验,当x=时,x−1≠0,
∴x=是原分式方程的解.
故选:C.
5.(2021·山东河东·二模)为了缓解城市用水紧张及提倡节约用水,某市自2021年1月1日起调整居民用水价格,每立方米水费上涨25%,该市林老师家2020年12月份的水费是18元,而2021年1月份的水费是36元,且已知林老师家2021年1月份的用水量比2020年12月份的用水量多3m3,求该市去年的居民用水价格?设去年的居民用水价格x元/m3,则所列方程正确的是( )
A. B. C. D.
【答案】B
【分析】
根据题意可以列出相应的方程,从而可以解答本题.
【详解】
解:由题意可得:
,
故选:B.
6.(2021·山东福山·模拟预测)若关于x的分式方程有增根,则a的值为( )
A.−3 B.3 C.2 D.
【答案】A
【分析】
去分母化分式方程为整式方程,将增根x=2代入整式方程即可求得.
【详解】
解:,
去分母,得:.
∵分式方程有增根,
∴增根为x=2,
将x=2代入整式方程,得:,
得:.
解得
故选A.
7.(2021·山东诸城·一模)已知关于的分式方程的解为正数,则正整数可以取( )
A.6 B.5 C.4 D.3
【答案】C
【分析】
先去分母,将原方程转化为整式方程,求得方程的解,再根据解为正数及m为正整数求得答案即可.
【详解】
解:方程两边同时乘以(x-1)得:
∴
∵解为正数,
∴
∴m<5,
又∵m为正整数,
∴m=1或m=2或m=3或m=4.
∵当时,x-1=0,
∴m=3不符合题意.
∴正整数m的值为1,2或4.
故选:C.
8.(2021·山东·济宁学院附属中学三模)随着快递业务量的增加,某快递公司为快递品更换快捷的交通工具,公司投递快件的能力由每天300件提高到420件,平均每人每天比原来多投递8件.若快递公司的快递员人数不变,求原来平均每人每天投递快件多少件?设原来平均每人每天投递快件件,根据题意可列方程为( )
A. B.
C. D.
【答案】D
【分析】
设原来平均每人每天投递快件x件,则更换快捷的交通工具后平均每人每天投递快件(x+8)件,根据该快递公司的快递员人数不变,即可得出关于x的分式方程,此题得解.
【详解】
解:设原来平均每人每天投递快件x件,则更换快捷的交通工具后平均每人每天投递快件(x+8)件,
依题意得:.
故选:D.
9.(2021·山东兰山·二模)网上购物已经成为人们常用的一种购物方式.购物方式的改变给快递行业带来了商机,也带来了挑战.为了提高效率,某快递公司研发了快递机器人专门负责分拣包裹,已知单个机器人比人工(一个人)每小时多分拣100个,单个机器人分拣9000个包裹和人工(一个人)分拣6000个包裹所用时间相同.设人工(一个人)每小时分拣x个包裹,则可列方程为( )
A. B.
C. D.
【答案】A
【分析】
根据单个机器人比人工(一个人)每小时多分拣100个,单个机器人分拣9000个包裹和人工(一个人)分拣6000个包裹所用时间相同,可以列出相应的分式方程,从而可以解答本题.
【详解】
解:设人工(一个人)每小时分拣x个包裹,则单个机器人每小时分拣个
由题意可得,,
故选:A.
10.(2021·山东泗水·一模)暑假期间,某科幻小说的销售量急剧上升.某书店分别用600元和800元两次购进该小说,第二次购进的数量比第一次多40套,且两次购书时,每套书的进价相同.若设书店第一次购进该科幻小说x套,由题意列方程正确的是( )
A. B.
C. D.
【答案】C
【分析】
根据第一次进书的总钱数÷第一次购进套数=第二次进书的总钱数÷第二次购进套数列方程可得.
【详解】
若设书店第一次购进该科幻小说x套,
由题意列方程正确的是,
故选:C.
二、填空题
11.(2021·山东青岛·中考真题)在一个不透明的袋中装有若干个红球和4个黑球,每个球除颜色外完全相同.摇匀后从中摸出一个球,记下颜色后再放回袋中.不断重复这一过程,共摸球100次.其中有40次摸到黑球,估计袋中红球的个数是__________.
【答案】6
【分析】
估计利用频率估计概率可估计摸到黑球的概率为 ,然后根据概率公式构建方程求解即可.
【详解】
解:设袋中红球的个数是x个,根据题意得:
,
解得:x=6,
经检验:x=6是分式方程的解,
即估计袋中红球的个数是6个.
故答案为:6.
12.(2021·山东潍坊·中考真题)若x<2,且,则x=_______.
【答案】1
【分析】
先去掉绝对值符号,整理后方程两边都乘以x﹣2,求出方程的解,再进行检验即可.
【详解】
解:|x﹣2|+x﹣1=0,
∵x<2,
∴方程为2﹣x+x﹣1=0,
即1,
方程两边都乘以x﹣2,得1=﹣(x﹣2),
解得:x=1,
经检验x=1是原方程的解,
故答案为:1.
13.(2021·山东东营·中考真题)某地积极响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展荒山绿化,打造美好家园,促进旅游发展.某工程队承接了90万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了任务.设原计划每天绿化的面积为万平方米,则所列方程为________.
【答案】
【分析】
原计划每天绿化的面积为万平方米,则实际每天绿化的面积为万平方米,根据工作时间=工作总量工作效率,结合实际比原计划提前30天完成了这一任务,即可列出关于的分式方程.
【详解】
设原计划每天绿化的面积为万平方米,则实际每天绿化的面积为万平方米,
依据题意:
故答案为:
14.(2021·山东·日照市田家炳实验中学一模)已知关于x的方程无解,则m的值是___.
【答案】或1
【分析】
分方程有增根,增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母,得到,然后代入化为整式方程的方程算出m的值和方程没有增根两种情况进行讨论.
【详解】
解:①当方程有增根时
方程两边都乘,得,
∴最简公分母,
解得,
当时,
故m的值是1,
②当方程没有增根时
方程两边都乘,得,
解得,
当分母为0时,此时方程也无解,
∴此时,
解得,
∴综上所述,当或1时,方程无解.
故答案为:或1.
15.(2021·山东滨城·模拟预测)已知关于的分式方程的解为非负数,则的取值范围为______.
【答案】且
【分析】
根据解分式方程,可得分式方程的解,根据分式方程的解为负数,可得不等式,解不等式,可得答案.
【详解】
解:
去分母,得:,
移项、合并,得:
系数化为1得:
∵分式方程的解为非负数,
∴且,
解得:且,
故答案为:且.
三、解答题
16.(2021·山东青岛·中考真题)某超市经销甲、乙两种品牌的洗衣液,进货时发现,甲品牌洗衣液每瓶的进价比乙品牌高6元,用1800元购进甲品牌洗衣液的数量是用100元购进乙品牌洗衣液数量的.销售时,甲品牌洗衣液的售价为36元/瓶,乙品牌洗衣液的售价为28元/瓶.
(1)求两种品牌洗衣液的进价;
(2)若超市需要购进甲、乙两种品牌的洗衣液共120瓶,且购进两种洗衣液的总成本不超过3120元,超市应购进甲、乙两种品牌洗衣液各多少瓶,才能在两种洗衣液完全售出后所获利润最大?最大利润是多少元?
【答案】(1)甲品牌洗衣液进价为30元/瓶,乙品牌洗衣液进价为24元/瓶;(2)购进甲品牌洗衣液40瓶,乙品牌洗衣液80瓶时所获利润最大,最大利润是560元
【分析】
(1)设甲品牌洗衣液每瓶的进价是x元,则乙品牌洗衣液每瓶的进价是(x-6)元,根据数量=总价÷单价,结合用1800元购进乙品牌洗衣液数量的,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设可以购买m瓶乙品牌洗手液,则可以购买(100-m)瓶甲品牌洗手液,根据总价=单价×数量,结合总费用不超过1645元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最大整数值即可得出结论.
【详解】
解:(1)设甲品牌洗衣液进价为元/瓶,则乙品牌洗衣液进价为元/瓶,
由题意可得,,
解得,
经检验是原方程的解.
答:甲品牌洗衣液进价为30元/瓶,乙品牌洗衣液进价为24元/瓶.
(2)设利润为元,购进甲品牌洗衣液瓶,
则购进乙品牌洗衣液瓶,
由题意可得,,
解得,
由题意可得,,
∵,∴随的增大而增大,
∴当时,取最大值,.
答:购进甲品牌洗衣液40瓶,乙品牌洗衣液80瓶时所获利润最大,最大利润是560元.
17.(2021·山东济南·中考真题)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.
(1)求甲、乙两种粽子的单价分别是多少元?
(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?
【答案】(1)乙种粽子的单价为4元,则甲种粽子的单价为8元;(2)最多购进87个甲种粽子
【分析】
(1)设乙种粽子的单价为x元,则甲种粽子的单价为2x元,然后根据“购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个”可列方程求解;
(2)设购进m个甲种粽子,则购进乙种粽子为(200-m)个,然后根据(1)及题意可列不等式进行求解.
【详解】
解:(1)设乙种粽子的单价为x元,则甲种粽子的单价为2x元,由题意得:
,
解得:,
经检验是原方程的解,
答:乙种粽子的单价为4元,则甲种粽子的单价为8元.
(2)设购进m个甲种粽子,则购进乙种粽子为(200-m)个,由(1)及题意得:
,
解得:,
∵m为正整数,
∴m的最大值为87;
答:最多购进87个甲种粽子.
18.(2021·山东威海·中考真题)六一儿童节来临之际,某商店用3000元购进一批玩具,很快售完;第二次购进时,每件的进价提高了20%,同样用3000元购进的数量比第一次少了10件.
(1)求第一次每件的进价为多少元?
(2)若两次购进的玩具售价均为70元,且全部售完,求两次的总利润为多少元?
【答案】(1)第一次每件的进价为50元;(2)两次的总利润为1700元.
【分析】
(1)设第一次每件的进价为x元,则第二次进价为(1+20%)x,根据等量关系,列出分式方程,即可求解;
(2)根据总利润=总售价-总成本,列出算式,即可求解.
【详解】
解:(1)设第一次每件的进价为x元,则第二次进价为(1+20%)x,
根据题意得:,解得:x=50,
经检验:x=50是方程的解,且符合题意,
答:第一次每件的进价为50元;
(2)(元),
答:两次的总利润为1700元.
19.(2021·山东济宁·中考真题)某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.
(1)求甲、乙两种商品每箱各盈利多少元?
(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱.如调整价格,每降价1元,平均每天可以多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?
【答案】(1)甲种商品每箱盈利15元,则乙种商品每箱盈利10元;(2)当降价5元时,该商场利润最大,最大利润是2000元.
【分析】
(1)设甲种商品每箱盈利x元,则乙种商品每箱盈利(x-5)元,根据题意列出方程,解方程即可得出结论;
(2)设甲种商品降价a元,则每天可多卖出20a箱,利润为w元,根据题意列出函数解析式,根据二次函数的性质求出函数的最值.
【详解】
解:(1)设甲种商品每箱盈利x元,则乙种商品每箱盈利(x-5)元,根据题意得:
,
整理得:x2-18x+45=0,
解得:x=15或x=3(舍去),
经检验,x=15是原分式方程的解,符合实际,
∴x-5=15-5=10(元),
答:甲种商品每箱盈利15元,则乙种商品每箱盈利10元;
(2)设甲种商品降价a元,则每天可多卖出20a箱,利润为w元,由题意得:
w=(15-a)(100+20a)=-20a2+200a+1500=-20(a-5)2+2000,
∵a=-20,
当a=5时,函数有最大值,最大值是2000元,
答:当降价5元时,该商场利润最大,最大利润是2000元.
20.(2021·山东聊城·中考真题)为迎接建党一百周年,我市计划用两种花卉对某广场进行美化.已知用600元购买A种花卉与用900元购买B种花卉的数量相等,且B种花卉每盆比A种花卉多0.5元.
(1)A,B两种花卉每盆各多少元?
(2)计划购买A,B两种花卉共6000盆,其中A种花卉的数量不超过B种花卉数量的,求购买A种花卉多少盆时,购买这批花卉总费用最低,最低费用是多少元?
【答案】(1)A 种花弃每盆1元,B种花卉每盆1.5元;(2)购买A 种花卉1500盆时购买这批花卉总费用最低,最低费用为 8250元
【分析】
(1)设A 种花弃每盆x元,B 种花卉每盆(x+0.5)元,根据题意列分式方程,解出方程并检验;
(2)设购买A种花卉∶t盆,购买这批花卉的总费用为w元,则t≤(6000-t),w=t+1.5(6000-t)=-0.5t+9000,w随t的增大而减小,所以根据t的范围可以求得w的最小值.
【详解】
解:(1)设A 种花弃每盆x元,B 种花卉每盆(x+0.5)元.
根据题意,得.
解这个方程,得x=1.
经检验知,x=1是原分式方程的根,并符合题意.
此时x+0.5=1+0.5=1.5(元).
所以,A种花弃每盆1元,B种花卉每盆1.5元.
(2)设购买A种花卉∶t盆,购买这批花卉的总费用为w元,则t≤(6000-t),
解得∶t≤1500.
由题意,得w=t+1.5(6000-t)=-0.5t+9000.
因为w是t的一次函数,k=-0.5<0,w随t的增大而减小,所以当t=1500 盆时,w最小.
w=-0.5×1500+9000=8250(元).
所以,购买A种花卉1500盆时购买这批花卉总费用最低,最低费用为8250元.
考点10分式方程(解析版)-2022年数学中考一轮复习考点透析(北京版): 这是一份考点10分式方程(解析版)-2022年数学中考一轮复习考点透析(北京版),共11页。试卷主要包含了解分式方程,由实际问题抽象出分式方程,分式方程的应用等内容,欢迎下载使用。
考点06分式方程(解析版)-2022年数学中考一轮复习考点透析(苏科版): 这是一份考点06分式方程(解析版)-2022年数学中考一轮复习考点透析(苏科版),共8页。试卷主要包含了分式方程,分式方程的一般方法,分式方程的特殊解法等内容,欢迎下载使用。
考点06 分式方程(解析版)-2022年数学中考一轮复习考点透析(冀教版): 这是一份考点06 分式方程(解析版)-2022年数学中考一轮复习考点透析(冀教版),共11页。试卷主要包含了分式方程的概念,分式方程的解法,增根,分式方程的应用等内容,欢迎下载使用。