开学活动
搜索
    上传资料 赚现金

    精品试题冀教版九年级数学下册第二十九章直线与圆的位置关系专题攻克试卷

    精品试题冀教版九年级数学下册第二十九章直线与圆的位置关系专题攻克试卷第1页
    精品试题冀教版九年级数学下册第二十九章直线与圆的位置关系专题攻克试卷第2页
    精品试题冀教版九年级数学下册第二十九章直线与圆的位置关系专题攻克试卷第3页
    还剩30页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第29章 直线与圆的位置关系综合与测试精品达标测试

    展开

    这是一份2021学年第29章 直线与圆的位置关系综合与测试精品达标测试,共33页。
    九年级数学下册第二十九章直线与圆的位置关系专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、已知半圆O的直径AB=8,沿弦EF折叠,当折叠后的圆弧与直径AB相切时,折痕EF的长度m(  )A.m=4 B.m=4 C.4≤m≤4 D.4m≤42、已知的半径为5cm,点P到圆心的距离为4cm,则点P和圆的位置关系(   A.点在圆内 B.点在圆外 C.点在圆上 D.无法判断3、如图,PAPB是⊙O的切线,AB为切点,PA=4,则PB的长度为(       A.3 B.4 C.5 D.64、矩形ABCD中,AB=8,BC=4,点P在边AB上,且AP=3,如果⊙P是以点P为圆心,PD为半径的圆,那么下列判断正确的是(  )A.点BC均在⊙P B.点B在⊙P上、点C在⊙PC.点BC均在⊙P D.点B在⊙P上、点C在⊙P5、如图,在中,以AB为直径的圆交AC于点D的切线DEBC于点E,若于点E,则的半径为(       ).A.4 B. C.2 D.6、如图,正六边形螺帽的边长是4cm,那么这个正六边形半径R和扳手的开口a的值分别是(  )A.2,2 B.4,4 C.4,2 D.4,7、平面内,⊙O的半径为3,若点P在⊙O外,则OP的长可能为(       A.4 B.3 C.2 D.18、在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2,下列说法错误的是(  )A.当a<5时,点B在⊙A B.当1<a<5时,点B在⊙AC.当a<1时,点B在⊙A D.当a>5时,点B在⊙A9、如图,边长为4的正三角形外接圆,以其各边为直径作半圆,则图中阴影部分面积为(  )A.12+2π B.4+π C.24+2π D.12+14π10、圆O的半径为5cm,点A到圆心O的距离OA=4cm,则点A与圆O的位置关系为(  )A.点A在圆上 B.点A在圆内 C.点A在圆外 D.无法确定第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,PA是⊙O的切线,A是切点.若∠APO=25°,则∠AOP=___________°.2、以平面直角坐标系原点O为圆心,半径为3的圆与直线x=3的位置关系是______.3、如图,已知的半径为1,圆心在抛物线上运动,当轴相切时,圆心的横坐标为______.4、如图,在△ABC中,I是△ABC的内心,OAB边上一点,⊙O经过点B且与AI相切于点I,若tan∠BAC,则sin∠ACB的值为 _____.5、如图,PAPB分别与⊙O相切于AB两点,C是优弧AB上的一个动点,若∠P = 50°,则∠ACB =_____________°三、解答题(5小题,每小题10分,共计50分)1、如图,已知AB是⊙P的直径,点在⊙P上,为⊙P外一点,且∠ADC=90°,2∠B+∠DAB=180°     (1)试说明:直线为⊙P的切线.(2)若∠B=30°,AD=2,求CD的长.2、如图,⊙OABC的外接圆,∠ABC=45°,OCADADBC的延长线于DABOCE(1)求证:AD是⊙O的切线;(2)若AE=CE=2,求⊙O的半径和线段BC的长.3、如图,四边形OAEC是平行四边形,以O为圆心,OC为半径的圆交CED,延长COOB,连接ADABABO的切线.(1)求证:ADO的切线.(2)若O的半径为4,,求平行四边形OAEC的面积.4、如图,在平面直角坐标系中,的半径为1.如果将线段绕原点逆时针旋转后的对应线段所在的直线与相切,且切点在线段上,那么线段就是⊙C 的“关联线段”,其中满足题意的最小就是线段的“关联角”.(1)如图1,如果线段的“关联线段”,那么它的“关联角”为______(2)如图2,如果.那么的“关联线段”有______(填序号,可多选).①线段;②线段;③线段(3)如图3,如果,线段的“关联线段”,那么的取值范围是______.(4)如图4,如果点的横坐标为,且存在以为端点,长度为的线段是的“关联线段”,那么的取值范围是______.5、如图,在中,平分,与交于点,垂足为,与交于点,经过三点的交于点(1)求证的切线;(2)若,求的半径. -参考答案-一、单选题1、D【解析】【分析】根据题意作出图形,根据垂径定理可得,设,则,分情况讨论求得最大值与最小值,即可解决问题【详解】解:如图,根据题意,折叠后的弧为为切点,设点所在的圆心,的半径相等,即,连接,设交于点根据折叠的性质可得,又则四边形是菱形,且,则则当取得最大值时,取得最小值,即取得最小值,取得最小值时,取得最大值,根据题意,当点于点重合时,四边形是正方形此时当点与点重合时,此时最小,故选D【点睛】本题考查了垂径定理,切线的性质,折叠的性质,勾股定理,分别求得的最大值与最小值是解题的关键.2、A【解析】【分析】直接根据点与圆的位置关系进行解答即可.【详解】解:∵⊙O的半径为5cm,点P与圆心O的距离为4cm,5cm>4cm∴点P在圆内.故选:A.【点睛】本题考查了点与圆的位置关系,当点到圆心的距离小于半径的长时,点在圆内;当点到圆心的距离等于半径的长时,点在圆上;当点到圆心的距离大于半径的长时,点在圆外.3、B【解析】【分析】由切线的性质可推出.再根据直角三角形全等的判定条件“HL”,即可证明,即得出【详解】PAPB是⊙O的切线,AB为切点,∴在中,故选:B【点睛】本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.4、D【解析】【分析】如图所示,连接DPCP,先求出BP的长,然后利用勾股定理求出PD的长,再比较PCPD的大小,PBPD的大小即可得到答案.【详解】解:如图所示,连接DPCP∵四边形ABCD是矩形,∴∠A=∠B=90°,AP=3,AB=8,BP=AB-AP=5,PB=PD∴点C在圆P外,点B在圆P上,故选D.【点睛】本题主要考查了点与圆的位置关系,勾股定理,矩形的性质,熟知用点到圆心的距离与半径的关系去判断点与圆的位置关系是解题的关键.5、C【解析】【分析】连接ODBD,利用三角形外角的性质得到∠BOD=60°,证得△BOD是等边三角形,再利用切线的性质以及含30度角的直角三角形的性质求得BD=2BE=2,即可求解.【详解】解:连接ODBD∵∠CAB=30°,OD=OA∴∠CAB=∠ODA=30°,∴∠BOD=∠CAB+∠ODA=60°,OD=OB∴△BOD是等边三角形,DE是⊙O的切线,∴∠ODE=90°,∴∠BDE=30°,DEBC于点EBE=1,BD=2BE=2,OB=BD=2,即⊙O的半径为2,故选:C.【点睛】本题考查了切线的性质,含30度角的直角三角形的性质,等边三角形的判定和性质,正确作出辅助线,灵活应用定理是解决问题的关键.6、B【解析】【分析】根据正六边形的内角度数可得出∠BAD=30°,为等边三角形,得BC=2AB,再通过解直角三角形即可得出a的值,进而可求出a的值,此题得解.【详解】解:如图,∵正六边形的任一内角为120°,∴∠ABD=180°-120°=60°, ∴∠BAD=30°,为等边三角形, ∴这个正六边形半径R和扳手的开口a的值分别是4,4故选:B.【点睛】本题考查了正多边形以及勾股定理,牢记正多边形的内角度数是解题的关键.7、A【解析】【分析】根据点与圆的位置关系得出OP>3即可.【详解】解:∵⊙O的半径为3,点P在⊙O外,OP>3,故选:A.【点睛】本题考查点与圆的位置关系,解答的关键是熟知点与圆的位置关系:设平面内的点与圆心的距离为d,圆的半径为r,则点在圆外dr,点在圆上d=r,点在圆内dr8、A【解析】【分析】根据数轴以及圆的半径可得当d=r时,⊙A与数轴交于两点:1、5,进而根据点到圆心的距离与半径比较即可求得点与圆的位置关系,进而逐项分析判断即可【详解】解:∵圆心A在数轴上的坐标为3,圆的半径为2,∴当d=r时,⊙A与数轴交于两点:1、5,故当a=1、5时点B在⊙A上;dr即当1<a<5时,点B在⊙A内;dr即当a<1或a>5时,点B在⊙A外.由以上结论可知选项B、C、D正确,选项A错误.故选A.【点睛】本题考查了数轴,点与圆的位置关系,掌握点与圆的位置关系是解题的关键.9、A【解析】【分析】正三角形的面积加上三个小半圆的面积,再减去中间大圆的面积即可得到结果.【详解】解:正三角形的面积为:三个小半圆的面积为:,中间大圆的面积为:所以阴影部分的面积为:故选:【点睛】本题考查了正多边形与圆,圆的面积的计算,正三角形的面积的计算,正确的识别图形是解题的关键.10、B【解析】【分析】根据点与圆的位置关系的判定方法进行判断.【详解】解:∵⊙O的半径为5cm,点A到圆心O的距离为4cm,即点A到圆心O的距离小于圆的半径,∴点A在⊙O内.故选:B【点睛】本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外dr;点P在圆上d=r;点P在圆内dr二、填空题1、65【解析】【分析】根据切线的性质得到OAAP,根据直角三角形的两锐角互余计算,得到答案.【详解】解:∵PA是⊙O的切线,OAAP∵∠APO=25°,故答案为:65.【点睛】本题考查的是切线的性质、直角三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.2、相切【解析】【分析】本题应将原点到直线x=3的距离与半径对比即可判断.【详解】解:∵原点到直线x=3的距离为3,半径为3,则有3=3,∴这个圆与直线x=3相切.故答案为:相切.【点睛】本题考查了直线与圆的位置关系、坐标与图形性质.直线与圆相切,直线到圆的距离等于半径;与圆相离,直线到圆的距离大于半径.3、2或或0【解析】【分析】当⊙Px轴相切时,圆心P的纵坐标为1或-1,根据圆心P在抛物线上,所以当y为±1时,可以求出点P的横坐标.【详解】解:当y=1时,有1=-x2+1,x=0.y=-1时,有-1=-x2+1,x=故答案是:2或或0.【点睛】本题考查的是二次函数的综合题,利用圆与x轴相切得到点P的纵坐标,然后代入抛物线求出点P的横坐标.4、##0.8【解析】【分析】连接OIBI,作OEAC,可证△AOD是等腰三角形,然后证明ODBC,进而∠ADO=∠ACB,解三角形AOD即可.【详解】解:如图,连接OI并延长交ACD,连接BIAI与⊙O相切,AIOD∴∠AIO=∠AID=90°,I是△ABC的内心,∴∠OAI=∠DAI,∠ABI=∠CBIAIAI∴△AOI≌△ADIASA),AOADOBOI∴∠OBI=∠OIB∴∠OIB=∠CBIODBC∴∠ADO=∠COEACE∵tan∠BAC∴不妨设OE=24kAE=7kOAAD=25kDEADAE=18kOD=30k∴sin∠ACB故答案是:【点睛】本题主要考查了切线的性质,锐角三角函数,等腰三角形的性质和判定,全等三角形的判定和性质等知识,熟练掌握相关知识点是解题的关键.5、【解析】【分析】连接,根据切线的性质以及四边形内角和定理求得,进而根据圆周角定理即可求得∠ACB【详解】解:连接,如图,PAPB分别与⊙O相切故答案为:【点睛】本题考查了切线的性质,圆周角定理,四边形的内角和,掌握切线的性质是解题的关键.三、解答题1、 (1)见解析(2)【解析】【分析】(1)连接PC,则∠APC=2∠B,可证PCDA,证得PCCD,则结论得证;(2)连接AC,根据∠B=30°,等腰三角形外角性质∠CPA=2∠B=60°,再证△APC为等边三角形,可求∠DCA=90°-∠ACP=90°-60°=30°,AD=2,∠ADC=90°,利用30°直角三角形性质得出AC=2AD=4,然后根据勾股定理CD=即可.(1)连接PCPCPB∴∠B=∠PCB∴∠APC=2∠B∵2∠B+∠DAB=180°,∴∠DAP+∠APC=180°,PCDA∵∠ADC=90°,∴∠DCP=90°,DCCP∴直线CD为⊙P的切线;(2)连接AC∵∠B=30°,∴∠CPA=2∠B=60°,AP=CP,∠CPA=60°,∴△APC为等边三角形,∵∠DCP=90°,∴∠DCA=90°-∠ACP=90°-60°=30°,AD=2,∠ADC=90°,AC=2AD=4,CD=【点睛】本题考查切线的判定、平行线判定与性质,勾股定理、等腰三角形性质,外角性质,等边三角形的判定与性质等知识,解题的关键是灵活应用这些知识解决问题.2、 (1)见解析(2)4,【解析】【分析】(1)连接OA.由及圆周角定理求出∠OAD=90°,即可得到结论;(2)设⊙O的半径为R,在RtOAE中,勾股定理求出R, 延长CO交⊙OF,连接AF,证明△CEB∽△AEF,得到,由此求出⊙O的半径和线段BC的长.(1)证明:连接OA     ∴∠AOC+∠OAD=180°,∵∠AOC=2∠ABC=2×45°=90°,∴∠OAD=90°,     OAAD       OA是半径,AD是⊙O的切线.          (2)解:设⊙O的半径为R,则OA=ROE=R-2.RtOAE中,解得(不合题意,舍去),延长CO交⊙OF,连接AF∵∠AEF=∠CEB,∠B=∠AFE∴△CEB∽△AEF       CF是直径,CF=8,∠CAF=90°,又∵∠F=∠ABC=45°, ∴∠F=∠ACF=45°,AF=     BC=     【点睛】此题考查了证明直线是圆的切线,勾股定理,相似三角形的判定及性质,直径所对的圆周角是直角的性质,等腰直角三角形的性质,正确作出辅助线解题是解题的关键.3、 (1)见解析(2)32【解析】【分析】(1)连接OD,证明,可得,根据切线的性质可得,进而可得,即可证明ADO的切线;(2)根据平行四边形OAEC的面积等于2倍即可求解.(1)证明:连接OD∵四边形OAEC是平行四边形,又∵AB相切于点B又∵OD的半径,AD的切线.(2)RtAOD中,∴平行四边形OABC的面积是【点睛】本题考查了切线的性质与判定,平行四边形的性质,三角形全等的性质与判定,掌握切线的性质与判定是解题的关键.4、 (1)(2)②,③(3)(4)【解析】【分析】(1)作OD相切,此时所得最小,根据切线的性质可得,再由含角的直角三角形的特殊性质可得,再由勾股定理可得OD长度,判断切点在OD上即可得2)根据勾股定理求出各点与原点的距离与最长切线距离比较即可得;3)线段BD绕点O的旋转路线的半径为1的上,当OD相切时,由(1)可得:,根据题意即可确定t的取值范围,得出线段BD的“关联线段”;(4)当m取最大值时,M点运动最小半径是O到过点的直线l的距离m,根据题意可得,得出,即为m的最大值;当m取最小值时,作出相应图形,根据题意可得,再由,及点M所在位置,即可确定m的最小值,综合即可得.(1)解:如图所示:作OD相切, 此时的角度最小,且切点在线段OD上,OA的关联角为(2)解:如图所示:连接切点不在线段上,不是的“关联线段”;的“关联线段”;的“关联线段”;(3)解:,线段BD绕点O的旋转路线的半径为1的上,OD相切时,由(1)可得:时,线段BD的“关联线段”,故答案为:(4)解:如图所示:当m取最大值时,M点运动最小半径是O到过点的直线l的距离是mm的最大值为4如图所示:当m取小值时,开始时存在ME相切,,及点M所在位置,综上可得:故答案为:【点睛】题目主要考查直线与圆的位置关系,线段旋转的性质,勾股定理解三角形等,理解题意,作出相应图象是解题关键.5、 (1)见解析(2)【解析】【分析】(1)连接,利用角平分线的定义和等腰三角形的性质可证,从而,得到,根据切线的判定方法可证的切线;(2)证明,利用相似三角形的性质可求的半径.(1)证明:连接是直径,的中点.平分又∵又∵经过半径的外端,的切线.(2)解:∵中,中,.设半径为,则的半径为【点睛】本题考查了切线的判定,等腰三角形的性质,平行线的判定与性质,以及相似三角形的判定与性质,掌握切线的判定方法是解(1)的关键,掌握相似三角形的判定与性质是解(2)的关键. 

    相关试卷

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品当堂检测题:

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品当堂检测题,共34页。

    2021学年第29章 直线与圆的位置关系综合与测试精品课后作业题:

    这是一份2021学年第29章 直线与圆的位置关系综合与测试精品课后作业题,共29页。试卷主要包含了下列四个命题中,真命题是等内容,欢迎下载使用。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀随堂练习题:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀随堂练习题,共36页。试卷主要包含了已知M等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map