终身会员
搜索
    上传资料 赚现金

    2021-2022学年冀教版九年级数学下册第二十九章直线与圆的位置关系同步测试练习题(无超纲)

    立即下载
    加入资料篮
    2021-2022学年冀教版九年级数学下册第二十九章直线与圆的位置关系同步测试练习题(无超纲)第1页
    2021-2022学年冀教版九年级数学下册第二十九章直线与圆的位置关系同步测试练习题(无超纲)第2页
    2021-2022学年冀教版九年级数学下册第二十九章直线与圆的位置关系同步测试练习题(无超纲)第3页
    还剩36页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品同步练习题

    展开

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品同步练习题,共39页。
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,将的圆周分成五等分(分点为A、B、C、D、E),依次隔一个分点相连,即成一个正五角星形.小张在制图过程中,惊讶于图形的奇妙,于是对图形展开了研究,得到:点M是线段AD、BE的黄金分割点,也是线段NE、AH的黄金分割点.在以下结论中,不正确的是( )
    A.B.
    C.D.
    2、如图,在矩形ABCD中,点E在CD边上,连接AE,将沿AE翻折,使点D落在BC边的点F处,连接AF,在AF上取点O,以O为圆心,线段OF的长为半径作⊙O,⊙O与AB,AE分别相切于点G,H,连接FG,GH.则下列结论错误的是( )
    A.B.四边形EFGH是菱形
    C.D.
    3、如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,将它镶嵌在一个圆形的金属框上,使A,G, H三点刚好在金属框上,则该金属框的半径是( )
    A.B.C.D.
    4、如图,等边△ABC内接于⊙O,D是上任一点(不与B、C重合),连接BD、CD,AD交BC于E,CF切⊙O于点C,AF⊥CF交⊙O于点G.下列结论:①∠ADC=60°;②DB2=DE•DA;③若AD=2,则四边形ABDC的面积为;④若CF=2,则图中阴影部分的面积为.正确的个数为( )
    A.1个B.2个C.3个D.4个
    5、若正六边形的边长为6,则其外接圆半径与内切圆半径的大小分别为( )
    A.6,3B.6,3C.3,6D.6,3
    6、在△ABC中,,点O为AB中点.以点C为圆心,CO长为半径作⊙C,则⊙C 与AB的位置关系是( )
    A.相交B.相切
    C.相离D.不确定
    7、如图,有一个亭子,它的地基是边长为4m的正六边形,则地基的面积为( )
    A.4m2B.12m2C.24m2D.24m2
    8、如图,正六边形螺帽的边长是4cm,那么这个正六边形半径R和扳手的开口a的值分别是( )
    A.2,2B.4,4C.4,2D.4,
    9、如图,BE是⊙O的直径,点A和点D是⊙O上的两点,过点A作的切线交BE延长线于点C,若∠ADE=36°,则∠C的度数是( )
    A.18°B.28°C.36°D.45°
    10、若O是ABC的内心,当时,( )
    A.130°B.160°C.100°D.110°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、《九章算术》是我国古代的数学名著,书中有这样的一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”.其意思是:“如图,现有直角三角形,勾(短直角边)长为 8 步,股(长直角边)长为 15 步,问该直角三角形所能容纳的最大圆的直径是多少?”答:该直角三角形所能容纳的最大圆的直径是______步.
    2、如图,在△ABC中,AB=AC=,BC=2,以点A为圆心作圆弧,与BC相切于点D,且分别交边AB,AC于点EF,则扇形AEF的面积为 _____.(结果保留π)
    3、如图,已知PA、PB是⊙O的两条切线,点A、点B为切点,线段OP交⊙O于点M.下列结论:①PA=PB;②OP⊥AB;③四边形OAPB有外接圆;④点M是△AOP外接圆的圆心.其中正确的结论是_____(填序号).
    4、如图,正六边形的边长为2,以为圆心,的长为半径画弧,得,连接,,则图中阴影部分的面积为________.
    5、如图,点O是的AB边上一点,,以OB长为半径作,与AC相切于点D.若,,则的半径长为______.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在中,,平分,与交于点,,垂足为,与交于点,经过,,三点的与交于点.
    (1)求证是的切线;
    (2)若,,求的半径.
    2、如图,在中,,平分交于点D,点O在上,以点O为圆心,为半径的圆恰好经过点D,分别交、于点E、F.
    (1)试判断直线与的位置关系,并说明理由;
    (2)若,,求阴影部分的面积(结果保留).
    3、如图,是的切线,点在上,与相交于,是的直径,连接,若.
    (1)求证:平分;
    (2)当,时,求的半径长.
    4、如图,是的直径,是半径,连接,.延长至点,使,过点作交的延长线于点.
    (1)求证:是的切线;
    (2)若,,求半径的长.
    5、如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.
    (1)求证:DE是⊙O的切线;
    (2)若DE=8,AE=6,求⊙O的半径.
    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    利用正五边形的性质,圆的性质,相似三角形的判定和性质,黄金分割定理判断即可.
    【详解】
    如图,连接AB,BC,CD,DE,EA,
    ∵点M是线段AD、BE的黄金分割点,也是线段NE、AH的黄金分割点,
    ∴,
    ∵AB=BC=CD=DE=EA,
    ∴∠DAE=∠AEB,
    ∴AM=ME,
    ∴,
    ∴A正确,不符合题意;
    ∵点M是线段AD、BE的黄金分割点,也是线段NE、AH的黄金分割点,
    ∴点F是线段BD的黄金分割点,
    ∴,
    ∵AB=BC=CD=DE=EA,∠BCD=∠AED,
    ∴△BCD≌△AED,
    ∴AD=BD,
    ∴,
    ∴B正确,不符合题意;
    ∵AB=BC=CD=DE=EA, ∠BAE=108°,
    ∴∠BAC=∠CAD=∠DAE,
    ∴∠CAD=36°,
    ∴D正确,不符合题意;
    ∵∠CAD=36°, AN=BN=AM=ME,
    ∴∠ANM=∠AMN=72°,
    ∴AM>MN,
    ∴C错误,符合题意;
    故选C.
    【点睛】
    本题考查了圆的性质,正五边形的性质,三角形的全等,黄金分割,熟练掌握圆的性质,正五边形的性质,黄金分割的意义是解题的关键.
    2、C
    【解析】
    【分析】
    由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根据切线长定理得到AG=AH,∠GAF=∠HAF,进而求出∠GAF=∠HAF=∠DAE=30°,据此对A作出判断;接下来延长EF与AB交于点N,得到EF是⊙O的切线,ANE是等边三角形,证明四边形EFGH是平行四边形,再结合HE=EF可对B作出判断;在RtEFC中,∠C=90°,∠FEC=60°,则EF=2CE,再结合AD=DE对C作出判断;由AG=AH,∠GAF=∠HAF,得出GH⊥AO,不难判断D.
    【详解】
    解:由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.
    ∵AB和AE都是⊙O的切线,点G、H分别是切点,
    ∴AG=AH,∠GAF=∠HAF,
    ∴∠GAF=∠HAF=∠DAE=30°,
    ∴∠BAE=2∠DAE,故A正确,不符合题意;
    延长EF与AB交于点N,如图:
    ∵OF⊥EF,OF是⊙O的半径,
    ∴EF是⊙O的切线,
    ∴HE=EF,NF=NG,
    ∴△ANE是等边三角形,
    ∴FG//HE,FG=HE,∠AEF=60°,
    ∴四边形EFGH是平行四边形,∠FEC=60°,
    又∵HE=EF,
    ∴四边形EFGH是菱形,故B正确,不符合题意;
    ∵AG=AH,∠GAF=∠HAF,
    ∴GH⊥AO,故D正确,不符合题意;
    在Rt△EFC中,∠C=90°,∠FEC=60°,
    ∴∠EFC=30°,
    ∴EF=2CE,
    ∴DE=2CE.
    ∵在Rt△ADE中,∠AED=60°,
    ∴AD=DE,
    ∴AD=2CE,故C错误,符合题意.
    故选C.
    【点睛】
    本题是一道几何综合题,考查了切线长定理及推论,切线的判定,菱形的定义,含30的直角三角形的性质,等边三角形的判定和性质,翻折变换等,正确理解翻折变换及添加辅助线是解决本题的关键.
    3、A
    【解析】
    【分析】
    如图,记过A,G, H三点的圆为则是,的垂直平分线的交点, 记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:再设利用勾股定理建立方程,再解方程即可得到答案.
    【详解】
    解:如图,记过A,G, H三点的圆为则是,的垂直平分线的交点,
    记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:
    四边形为正方形,则

    设 而AB=2,CD=3,EF=5,结合正方形的性质可得:



    又 而


    解得:

    故选A
    【点睛】
    本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过A,G, H三点的圆的圆心是解本题的关键.
    4、C
    【解析】
    【分析】
    如图1,△ABC是等边三角形,则∠ABC=60°,根据同弧所对的圆周角相等∠ADC=∠ABC=60°,所以判断①正确;如图1,可证明△DBE∽△DAC,则,所以DB•DC=DE•DA,而DB与DC不一定相等,所以判断②错误;如图2,作AH⊥BD于点H,延长DB到点K,使BK=CD,连接AK,先证明△ABK≌△ACD,可证明S四边形ABDC=S△ADK,可以求得S△ADK=,所以判断③正确;如图3,连接OA、OG、OC、GC,由CF切⊙O于点C得CF⊥OC,而AF⊥CF,所以AF∥OC,由圆周角定理可得∠AOC=120°,则∠OAC=∠OCA=30°,于是∠CAG=∠OCA=30°,则∠COG=2∠CAG=60°,可证明△AOG和△COG都是等边三角形,则四边形OABC是菱形,因此OA∥CG,推导出S阴影=S扇形COG,在Rt△CFG中根据勾股定理求出CG的长为4,则⊙O的半径为4,可求得S阴影=S扇形COG==,所以判断④正确,所以①③④这3个结论正确.
    【详解】
    解:如图1,∵△ABC是等边三角形,
    ∴∠ABC=60°,
    ∵等边△ABC内接于⊙O,
    ∴∠ADC=∠ABC=60°,
    故①正确;
    ∵∠BDE=∠ACB=60°,∠ADC=∠ABC=60°,
    ∴∠BDE=∠ADC,
    又∠DBE=∠DAC,
    ∴△DBE∽△DAC,
    ∴,
    ∴DB•DC=DE•DA,
    ∵D是上任一点,
    ∴DB与DC不一定相等,
    ∴DB•DC与DB2也不一定相等,
    ∴DB2与DE•DA也不一定相等,
    故②错误;
    如图2,作AH⊥BD于点H,延长DB到点K,使BK=CD,连接AK,
    ∵∠ABK+∠ABD=180°,∠ACD+∠ABD=180°,
    ∴∠ABK=∠ACD,
    ∴AB=AC,
    ∴△ABK≌△ACD(SAS),
    ∴AK=AD,S△ABK=S△ACD,
    ∴DH=KH=DK,
    ∵∠AHD=90°,∠ADH=60°,
    ∴∠DAH=30°,
    ∵AD=2,
    ∴DH=AD=1,
    ∴DK=2DH=2,,
    ∴S△ADK=,
    ∴S四边形ABDC=S△ABD+S△ACD=S△ABD+S△ABK=S△ADK=,
    故③正确;
    如图3,连接OA、OG、OC、GC,则OA=OG=OC,
    ∵CF切⊙O于点C,
    ∴CF⊥OC,
    ∵AF⊥CF,
    ∴AF∥OC,
    ∵∠AOC=2∠ABC=120°,
    ∴∠OAC=∠OCA=×(180°﹣120°)=30°,
    ∴∠CAG=∠OCA=30°,
    ∴∠COG=2∠CAG=60°,
    ∴∠AOG=60°,
    ∴△AOG和△COG都是等边三角形,
    ∴OA=OC=AG=CG=OG,
    ∴四边形OABC是菱形,
    ∴OA∥CG,
    ∴S△CAG=S△COG,
    ∴S阴影=S扇形COG,
    ∵∠OCF=90°,∠OCG=60°,
    ∴∠FCG=30°,
    ∵∠F=90°,
    ∴FG=CG,
    ∵FG2+CF2=CG2,CF=,
    ∴(CG)2+()2=CG2,
    ∴CG=4,
    ∴OC=CG=4,
    ∴S阴影=S扇形COG==,
    故④正确,
    ∴①③④这3个结论正确,
    故选C.
    【点睛】
    本题主要考查了等边三角形的性质与判定,圆切线的性质,圆周角定理,全等三角形的性质与判定,菱形的性质与判定,勾股定理,含30度角的直角三角形的性质等等,解题的关键在于能够熟练掌握相关知识进行求解.
    5、B
    【解析】
    【分析】
    如图1,⊙O是正六边形的外接圆,连接OA,OB,求出∠AOB=60°,即可证明△OAB是等边三角形,得到OA=AB=6;如图2,⊙O1是正六边形的内切圆,连接O1A,O1B,过点O1作O1M⊥AB于M,先求出∠AO1B=60°,然后根据等边三角形的性质和勾股定理求解即可.
    【详解】
    解:(1)如图1,⊙O是正六边形的外接圆,连接OA,OB,
    ∵六边形ABCDEF是正六边形,
    ∴∠AOB=360°÷6=60°,
    ∵OA=OB,
    ∴△OAB是等边三角形,
    ∴OA=AB=6;
    (2)如图2,⊙O1是正六边形的内切圆,连接O1A,O1B,过点O1作O1M⊥AB于M,
    ∵六边形ABCDEF是正六边形,
    ∴∠AO1B=60°,
    ∵O1A= O1B,
    ∴△O1AB是等边三角形,
    ∴O1A= AB=6,
    ∵O1M⊥AB,
    ∴∠O1MA=90°,AM=BM,
    ∵AB=6,
    ∴AM=BM,
    ∴O1M.
    故选B.
    【点睛】
    本题主要考查了正多边形与圆,等边三角形的性质与判定,勾股定理,熟知正多边形与圆的知识是解题的关键.
    6、B
    【解析】
    【分析】
    根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得⊙C 与AB的位置关系
    【详解】
    解:连接,
    ,点O为AB中点.
    CO为⊙C的半径,
    是的切线,
    ⊙C 与AB的位置关系是相切
    故选B
    【点睛】
    本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.
    7、D
    【解析】
    【分析】
    先根据等边三角形的性质求出△OBC的面积,然后由地基的面积是△OBC的6倍即可得到答案
    【详解】
    解:如图所示,正六边形ABCDEF,连接OB,OC,过点O作OP⊥BC于P,
    由题意得:BC=4cm,
    ∵六边形ABCD是正六边形,
    ∴∠BOC=360°÷6=60°,
    又∵OB=OC,
    ∴△OBC是等边三角形,
    ∴,,
    ∴,
    ∴,
    ∴,
    故选D.
    【点睛】
    本题主要考查了正多边形和圆,等边三角形的性质与判定,勾股定理,熟知正多边形和圆的关系是解题的关键.
    8、B
    【解析】
    【分析】
    根据正六边形的内角度数可得出∠BAD=30°,为等边三角形,得BC=2AB,再通过解直角三角形即可得出a的值,进而可求出a的值,此题得解.
    【详解】
    解:如图,
    ∵正六边形的任一内角为120°,
    ∴∠ABD=180°-120°=60°,
    ∴∠BAD=30°,为等边三角形,




    ∴这个正六边形半径R和扳手的开口a的值分别是4,4.
    故选:B.
    【点睛】
    本题考查了正多边形以及勾股定理,牢记正多边形的内角度数是解题的关键.
    9、A
    【解析】
    【分析】
    连接OA,DE,利用切线的性质和角之间的关系解答即可.
    【详解】
    解:连接OA,DE,如图,
    ∵AC是的切线,OA是的半径,
    ∴OAAC
    ∠OAC=90°
    ∠ADE=36°
    AOE=2∠ADE=72°
    ∠C=90°-∠AOE=90°-72°=18°
    故选:A.
    【点睛】
    本题考查了圆周角定理,切线的性质,能求出∠OAC和∠AOC是解题的关键.
    10、A
    【解析】
    【分析】
    由三角形内角和以及内心定义计算即可
    【详解】


    又∵O是ABC的内心
    ∴OB、OC为角平分线,

    ∴180°=180°-50°=130°
    故选:A.
    【点睛】
    本题考查了三角形内心的定义,与三角形各边都相切的圆叫做三角形的内切圆.三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.
    二、填空题
    1、6
    【解析】
    【分析】
    依题意,直角三角形性质,结合题意能够容纳的最大为内切圆,结合内切圆半径,利用等积法求解即可;
    【详解】
    设直角三角形中能容纳最大圆的半径为:;
    依据直角三角形的性质:可得斜边长为:
    依据直角三角形面积公式:,即为;
    内切圆半径面积公式:,即为;
    所以,可得:,所以直径为:;
    故填:6;
    【点睛】
    本题主要考查直角三角形及其内切圆的性质,重点在理解题意和利用内切圆半径求解面积;
    2、##
    【解析】
    【分析】
    先判断出△ABC是等腰直角三角形,从而连接AD,可得出AD=1,直接代入扇形的面积公式进行运算即可.
    【详解】
    解:∵AB=AC=,BC=2,
    ∴AB2+AC2=BC2,
    ∴△ABC是等腰直角三角形,
    ∴∠BAC=90°,
    连接AD,则AD=BC=1,
    则S扇形AEF=.
    故答案为:.
    【点睛】
    本题考查了扇形的面积计算、勾股定理的逆定理及等腰直角三角形的性质,直角三角形斜边上的中线等于斜边的一半,难度一般,解答本题的关键是得出AD的长度及∠BAC的度数.
    3、①②③
    【解析】
    【分析】
    根据切线长定理判断①,结合等腰三角形的性质判断②,利用切线的性质与直角三角形的斜边上的中线等于斜边的一半,可判断③,利用反证法判断④.
    【详解】
    解:如图, 是的两条切线,
    故①正确,
    故②正确,
    是的两条切线,

    取的中点,连接,则
    ∴以为圆心,为半径作圆,则共圆,故③正确,
    M是外接圆的圆心,

    与题干提供的条件不符,故④错误,
    综上:正确的说法是①②③.
    故填①②③.
    【点睛】
    本题属于圆的综合题,主要考查的是切线长定理、三角形的外接圆、四边形的外接圆等知识点,综合运用圆的相关知识是解答本题的关键.
    4、
    【解析】
    【分析】
    由正六边形ABCDEF的边长为2,可得AB=BC=2,∠ABC=∠BAF=120°,进而求出∠BAC=30°,∠CAE=60°,过B作BH⊥AC于H,由等腰三角形的性质和含30°直角三角形的性质得到AH=CH,BH=1,在Rt△ABH中,由勾股定理求得AH=,得到AC=2,根据扇形的面积公式即可得到阴影部分的面积
    【详解】
    解:∵正六边形ABCDEF的边长为2,
    =120°,
    ∵∠ABC+∠BAC+∠BCA=180°,
    ∴∠BAC=(180°-∠ABC)=×(180°-120°)=30°,
    过B作BH⊥AC于H,
    ∴AH=CH,BH=AB=×2=1,
    在Rt△ABH中,
    AH= =,
    ∴AC=2 ,
    同理可证,∠EAF=30°,
    ∴∠CAE=∠BAF-∠BAC-∠EAF=120°-30°-30°=60°,

    ∴图中阴影部分的面积为2π,
    故答案为:.
    【点睛】
    本题考查的是正六边形的性质和扇形面积的计算、等腰三角形的性质、勾股定理,掌握扇形面积公式是解题的关键.
    5、##
    【解析】
    【分析】
    在Rt△ABC中,利用正弦函数求得AB的长,再在Rt△AOD中,利用正弦函数得到关于r的方程,求解即可.
    【详解】
    解:在Rt△ABC中,BC=4,sinA=,
    ∴=,即=,
    ∴AB=5,
    连接OD,
    ∵AC是⊙O的切线,
    ∴OD⊥AC,
    设⊙O的半径为r,则OD= OB=r,
    ∴AO=5- r,
    在Rt△AOD中,sinA=,
    ∴=,即=,
    ∴r=.
    经检验r=是方程的解,
    ∴⊙O的半径长为.
    故答案为:.
    【点睛】
    本题考查了切线的性质,正弦函数,解题的关键是掌握切线的性质、解直角三角形等知识点.
    三、解答题
    1、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)连接,利用角平分线的定义和等腰三角形的性质可证,从而,得到,根据切线的判定方法可证是的切线;
    (2)证明,利用相似三角形的性质可求的半径.
    (1)
    证明:连接,
    ∵,
    ∴,
    ∴是直径,是的中点.
    ∵平分,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴.
    又∵,
    ∴,
    ∴,
    又∵经过半径的外端,
    ∴是的切线.
    (2)
    解:∵,
    ∴,
    在与中,
    ,,
    ∴.
    ∴,
    在中,,,
    ∴.
    设半径为,则,,
    即,
    ∴.
    ∴的半径为.
    【点睛】
    本题考查了切线的判定,等腰三角形的性质,平行线的判定与性质,以及相似三角形的判定与性质,掌握切线的判定方法是解(1)的关键,掌握相似三角形的判定与性质是解(2)的关键.
    2、 (1)BC与⊙O相切,理由见详解
    (2)
    【解析】
    【分析】
    (1)根据题意先证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线;
    (2)由题意直接根据三角形和扇形的面积公式进行计算即可得到结论.
    (1)
    解: BC与⊙O相切.
    证明:∵AD是∠BAC的平分线,
    ∴∠BAD=∠CAD.
    又∵OD=OA,
    ∴∠OAD=∠ODA.
    ∴∠CAD=∠ODA.
    ∴OD∥AC.
    ∴∠ODB=∠C=90°,即OD⊥BC.
    又∵BC过半径OD的外端点D,
    ∴BC与⊙O相切;
    (2)
    ∵,∠ODB=90°,,
    ∴,
    在Rt△OBD中,
    由勾股定理得:,
    ∴S△OBD= OD•BD= ,S扇形ODF= ,
    ∴阴影部分的面积=.
    【点睛】
    本题考查切线的判定和扇形面积以及勾股定理,熟练掌握切线的判定是解答本题的关键.
    3、 (1)见解析
    (2)的半径长为.
    【解析】
    【分析】
    (1)根据切线的性质,可得,由平行线的性质,等边对等角,等量代换即可得,进而得证;
    (2)连接,根据直径所对的圆周角是直角,勾股定理求得,证明列出比例式,代入数值求解可得,进而求得半径
    (1)
    证明:如图,连接,
    ∵是的切线,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,即平分;
    (2)
    解:如图,连接,
    在中,,,
    由勾股定理得:,
    ∵是的直径,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,即,
    解得:,
    ∴的半径长为.
    【点睛】
    本题考查了切线的性质,直径所对的圆周角是直角,相似三角形的性质与判定,勾股定理,掌握圆的相关知识以及相似三角形的是解题的关键.
    4、 (1)证明见解析
    (2)⊙O半径的长为
    【解析】
    【分析】
    (1)根据角度的数量关系,可得,即,进而可证是的切线;
    (2)由题意知,,由可得的值,由,知,,得,在中,,求解即可.
    (1)
    证明:∵是的直径




    ∴,

    ∴是的切线;
    (2)
    解:∵,



    ∵,

    ∴,


    ∴,
    在中,,即

    ∴半径长为.
    【点睛】
    本题考查了切线的判定,勾股定理,正切值.解题的关键在于对知识的灵活运用.
    5、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)连接OD,根据等腰三角形的性质和角平分线定义证得∠ODA=∠DAE,可证得DO∥MN,根据平行线的性质和切线的判定即可证的结论;
    (2)连接CD,先由勾股定理求得AD,连接CD,根据圆周角定理和相似三角形的判定证明△ACD∽△ADE,然后根据相似三角形的性质求解AC即可求解.
    (1)
    证明:连接OD,
    ∵OA=OD,
    ∴∠OAD=∠ODA,
    ∵AD平分∠CAM,∠OAD=∠DAE,
    ∴∠ODA=∠DAE,
    ∴DO∥MN,
    ∵DE⊥MN,
    ∴DE⊥OD,
    ∵D在⊙O上,
    ∴DE是⊙O的切线;
    (2)
    解:∵∠AED=90°,DE=8,AE=6,
    ∴AD==10,
    连接CD,∵AC是⊙O的直径,
    ∴∠ADC=∠AED=90°,
    ∵∠CAD=∠DAE,
    ∴△ACD∽△ADE,
    ∴,即,
    ∴AC=,
    ∴⊙O的半径是.
    【点睛】
    本题考查等腰三角形的性质、角平分线的定义、平行线的判定与性质、切线的判定、勾股定理、圆周角定理、相似三角形的判定与性质等知识,熟练掌握相关知识的联系与运用是解答的关键.

    相关试卷

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀测试题:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀测试题,共34页。

    数学九年级下册第29章 直线与圆的位置关系综合与测试精品习题:

    这是一份数学九年级下册第29章 直线与圆的位置关系综合与测试精品习题,共33页。试卷主要包含了将一把直尺,已知M等内容,欢迎下载使用。

    数学冀教版第29章 直线与圆的位置关系综合与测试优秀同步达标检测题:

    这是一份数学冀教版第29章 直线与圆的位置关系综合与测试优秀同步达标检测题,共32页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map