初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试测试题
展开
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试测试题,共30页。试卷主要包含了点P关于y轴对称点的坐标是.,一只跳蚤在第一象限及x轴,已知A等内容,欢迎下载使用。
七年级数学第二学期第十五章平面直角坐标系同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若点P(m,1)在第二象限内,则点Q(1﹣m,﹣1)在( )A.第四象限 B.第三象限 C.第二象限 D.第一象限2、在平面直角坐标系中,点在( )A.轴正半轴上 B.轴负半轴上C.轴正半轴上 D.轴负半轴上3、已知点A(x+2,x﹣3)在y轴上,则x的值为( )A.﹣2 B.3 C.0 D.﹣34、如图,在坐标系中用手盖住一点,若点到轴的距离为2,到轴的距离为6,则点的坐标是( )A. B. C. D.5、点P(﹣1,2)关于y轴对称点的坐标是( ).A.(1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)6、从车站向东走400米,再向北走500米到小红家,从小强家向南走500米,再向东走200米到车站,则小强家在小红家的( )A.正东方向 B.正西方向 C.正南方向 D.正北方向7、若点M在第四象限,且M到x轴的距离为1,到y轴的距离为2,则点M的坐标为( )A.(1,-2) B.(2,1) C.(-2,1) D.(2,-1)8、一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1) →(1,0)→ … ],且每秒跳动一个单位,那么第25秒时跳蚤所在位置的坐标是( )A.(4,0) B.(5,0) C.(0,5) D.(5,5)9、已知A(3,﹣2),B(1,0),把线段AB平移至线段CD,其中点A、B分别对应点C、D,若C(5,x),D(y,0),则x+y的值是( )A.﹣1 B.0 C.1 D.210、如图,A、B两点的坐标分别为A(-2,-2)、B(4,-2),则点C的坐标为( )A.(2,2) B.(0,0) C.(0,2) D.(4,5)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知点在第二象限,且离轴的距离为3,则____.2、在平面直角坐标系中,点与,关于y轴对称,则的值为____________.3、在直角坐标系中,已知点P(a-2,2a+7),点Q(2,5),若直线PQ∥y轴,则线段PQ的长为_____.4、线段CD是由线段AB平移得到的,点的对应点为,则点的对应点D的坐标是______.5、若点P(m﹣1,5)与点Q(﹣3,n)关于原点成中心对称,则m﹣n的值是___.三、解答题(10小题,每小题5分,共计50分)1、如图,在平面直角坐标系中,△ABC的两个顶点A,B在x轴上,顶点C在y轴上,且∠ACB=90°.(1)图中与∠ABC相等的角是 ;(2)若AC=3,BC=4,AB=5,求点C的坐标.2、如图,在平面直角坐标系中,的三个顶点均在格点上.(1)在网格中作出关于轴对称的图形;(2)直接写出以下各点的坐标:________,________,________;(3)网格的单位长度为1.则________.3、如图,在平面直角坐标系中,点B的坐标是,点C的坐标为,CB交x轴负半轴于点A,过点B作射线,作射线CD交BM于点D,且(1)求证:点A为线段BC的中点.(2)求点D的坐标.4、如图,已知△ABC三个顶点的坐标分A(﹣3,2),B(﹣1,3),C(﹣2,1).将△ABC先向右平移4个单位,再向下平移3个单位后,得到△A′B′C′,点A,B,C的对应点分别为A′、B′、C′.(1)根据要求在网格中画出相应图形;(2)写出△A′B′C′三个顶点的坐标.5、已知点A(a+2b,1),B(﹣2,2a﹣b),若点A,B关于y轴对称,求a+b的值.6、如图,在平面直角坐标系中,直角的三个顶点分别是,,.(1)将以点为旋转中心顺时针旋转,画出旋转后对应的并写出各个顶点坐标;(2)分别连结,后,求四边形的面积.7、(1)如图①所示,图中的两个三角形关于某点对称,请找出它们的对称中心O.(2)如图②所示,已知△ABC的三个顶点的坐标分别为A(4,﹣1),B(1,1),C(3,﹣2).将△ABC绕原点O旋转180°得到△A1B1C1,请画出△A1B1C1,并写出点A1的坐标.8、如图1,A(﹣2,6),C(6,2),AB⊥y轴于点B,CD⊥x轴于点D.(1)求证:△AOB≌△COD;(2)如图2,连接AC,BD交于点P,求证:点P为AC中点;(3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EF.EF⊥CE且EF=CE,点G为AF中点.连接EG,EO,求证:∠OEG=45°.9、在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系.(2)请作出△ABC关于y轴对称的△A′B′C′.(3)求△ABC的面积 .10、如图,在所给网格图(每小格边长均为1的正方形)中完成下列各题:(1)△ABC的面积为 ;(2)画出格点△ABC(顶点均在格点上)关于x轴对称的△A1B1C1;(3)在y轴上画出点Q,使QA+QC最小.(保留画的痕迹) -参考答案-一、单选题1、A【分析】直接利用第二象限内点的坐标特点得出m的取值范围进而得出答案.【详解】∵点P(m,1)在第二象限内,∴m<0,∴1﹣m>0,则点Q(1﹣m,﹣1)在第四象限.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2、B【分析】依据坐标轴上的点的坐标特征即可求解.【详解】解:∵点(,),纵坐标为∴点(,)在x轴负半轴上故选:B【点睛】本题考查了点的坐标:坐标平面内的点与有序实数对是一一对应的关系;解题时注意:x轴上点的纵坐标为,y轴上点的横坐标为.3、A【分析】根据y轴上点的横坐标为0列方程求解即可.【详解】解:∵点A(x+2,x﹣3)在y轴上,∴x+2=0,解得x=-2.故选:A.【点睛】本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.4、C【分析】首先根据P点在第四象限,可以确定P点横纵坐标的符号,再由P到坐标轴的距离即可确定P点坐标.【详解】解:∵P点在第四象限,∴P点横坐标大于0,纵坐标小于0,∵P点到x轴的距离为2,到y轴的距离为6,∴P点的坐标为(6,-2),故选C.【点睛】本题主要考查了点所在的象限的坐标特征,点到坐标轴的距离,解题的关键在于能够熟练掌握第四象限点的坐标特征.5、A【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(-x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出A的对称点的坐标,从而可以确定所在象限.【详解】解:∵点P(-1,2)关于y轴对称,∴点P(-1,2)关于y轴对称的点的坐标是(1,2).故选:A.【点睛】本题主要考查了平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.6、B【分析】根据二人向同一方向走的距离可知二人的方向关系,解答即可.【详解】解:二人都在车站北500米,小红在学校东,小强在学校西,所以小强家在小红家的正西.【点睛】本题考查方向角,解题的关键是画出相应的图形,利用数形结合的思想进行解答.7、D【分析】先判断出点的横、纵坐标的符号,再根据点到轴、轴的距离即可得.【详解】解:点在第四象限,点的横坐标为正数,纵坐标为负数,点到轴的距离为1,到轴的距离为2,点的纵坐标为,横坐标为2,即,故选:D.【点睛】本题考查了点坐标,熟练掌握各象限内的点坐标的符号规律是解题关键.8、C【分析】根据题意,找出其运动规律,质点每秒移动一个单位,质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推, 即可得出答案.【详解】解:由题意可知,质点每秒移动一个单位质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推,质点到达(4,0)时,共用16秒;质点到达(0,4)时,共用16+8=24秒;质点到达(0,5)时,共用25秒;故选:C.【点睛】本题考查图形变化与运动规律,根据所给质点运动的特点能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.找出规律是解题的关键.9、C【分析】由对应点坐标确定平移方向,再由平移得出x,y的值,即可计算x+y.【详解】∵A(3,﹣2),B(1,0)平移后的对应点C(5,x),D(y,0),∴平移方法为向右平移2个单位,∴x=﹣2,y=3,∴x+y=1,故选:C.【点睛】本题考查坐标的平移,掌握点坐标平移的性质是解题的关键,点坐标平移:横坐标左减右加,纵坐标下减上加.10、B【分析】根据A、B两点的坐标建立平面直角坐标系即可得到C点坐标.【详解】解:∵A点坐标为(-2,-2),B点坐标为(4,-2),∴可以建立如下图所示平面直角坐标系,∴点C的坐标为(0,0),故选B.【点睛】本题主要考查了写出坐标系中点的坐标,解题的关键在于能够根据题意建立正确的平面直角坐标系.二、填空题1、8【分析】根据题意可得,求出的值,代入计算即可.【详解】解:点在第二象限,且离轴的距离为3,,解得,.故答案为:8.【点睛】本题考查了平面直角坐标系-点到坐标轴的距离,绝对值的意义,跟具体题意求出的值是解本题的关键.2、5【分析】关于轴对称的两个点的横坐标互为相反数,纵坐标不变,根据原理直接求解的值,再代入进行计算即可.【详解】解: 点与,关于y轴对称, 故答案为:5【点睛】本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的横坐标互为相反数,纵坐标不变”是解本题的关键.3、10【分析】直线PQ∥y轴,则P、Q两点横坐标相等,有a-2=2,得a=4,则P点坐标为(2,15),PQ的长为=10.【详解】∵直线PQ∥y轴∴a-2=2∴a=4∴P点坐标为(2,15)PQ==10.故答案为10.【点睛】本题考查了平面直角坐标系,平面直角坐标系中两点之间的线段与x轴平行,两点之间距离为横坐标差的绝对值,两点之间的线段与y轴平行,两点之间距离为纵坐标差的绝对值.4、【分析】点的对应点为,确定平移方式,先向右平移5个单位长度,再向上平移3个单位长度,从而结合可得其对应点的坐标.【详解】解: 线段CD是由线段AB平移得到的,点的对应点为,而 , 故答案为:【点睛】本题考查的是坐标系内点的平移,掌握由坐标的变化确定平移方式,再由平移方式得到对应点的坐标是解本题的关键.5、9【分析】根据关于原点对称点的坐标特征求出、的值,再代入计算即可.【详解】解:点与点关于原点成中心对称,,,即,,,故答案为:9.【点睛】本题考查关于原点对称的点坐标特征,解题的关键是掌握关于原点对称的点坐标特征,即纵坐标互为相反数,横坐标也互为相反数.三、解答题1、(1)∠ACO;(2)点C的坐标为(0,).【分析】(1)由同角的余角相等,可得到∠ABC=∠ACO;(2)利用面积法可求得CO的长,进而得到点C的坐标.【详解】解:(1)∵OC⊥AB,∠ACB=90°.∴∠ABC+∠BCO=∠ACO+∠BCO=90°,∴∠ABC=∠ACO;故答案为:∠ACO;(2)∵AC=3,BC=4,AB=5,∴三角形ABC是直角三角形,∠ACB=90°ABCO=ACBC,即CO==,∴点C的坐标为(0,).【点睛】本题考查了同角的余角相等,面积法求线段的长,坐标与图形,解题的关键是灵活运用所学知识解决问题.2、(1)见解析;(2);; ;(3)5【分析】(1)利用轴对称的性质分别作出A,B,C的对应点A1,B1,C1即可;(2)根据点的位置写出坐标即可;(3)把三角形的面积看成矩形面积减去周围三个三角形面积即可.【详解】解:(1)如图,△A1B1C1即为所求;(2)A1(3,4),B1(5,2),C1(2,0).故答案为:(3,4),(5,2),(2,0);(3)网格的单位长度为1,则=3×4-×2×3-×2×2-×1×4=5,故答案为:5.【点睛】本题考查轴对称,三角形的面积等知识,解题的关键是掌握轴对称的性质,学会利用分割法求三角形面积.3、(1)证明见解析,(2)(8,2).【分析】(1)过点C作CQ⊥OA于Q,证△CQA≌△BOA,即可证明点A为线段BC的中点;(2)过点C作CR⊥OB于R,过点D作DS⊥OB于S,证△CRB≌△BSD,根据全等三角形对应边相等即可求点D的坐标.【详解】(1)证明:过点C作CQ⊥OA于Q,∵点B的坐标是,点C的坐标为,∴CQ=OB=4,∵∠CQO=∠BOA=90°,∠CAQ=∠BAO,∴△CQA≌△BOA,∴CA=AB,∴点A为线段BC的中点.(2)过点C作CR⊥OB于R,过点D作DS⊥OB于S,∵,∴∠CRB=∠DSB=∠CBD=90°,∴∠CBR+∠SBD=90°,∠SDB+∠SBD=90°,∴∠CBR=∠SDB,∵,∴∠BCD=∠BDC=45°,∴CB=DB,∴△CRB≌△BSD,∴CR=SB,RB=DS,∵点B的坐标是,点C的坐标为,∴CR=SB=6,RB=DS=8,∴OS=SB-OB=2,点D的坐标为(8,2).【点睛】本题考查了全等三角形的判定与性质和点的坐标,解题关键是树立数形结合思想,恰当作辅助线,构建全等三角形.4、(1)见解析;(2),,【分析】(1)利用平移变换的性质分别作出,,的对应点,,即可.(2)根据平面直角坐标系写出,,的坐标.【详解】解:(1)如图,△即为所求,(2)根据平面直角坐标系可得:,,.【点睛】本题考查作图平移变换等知识,解题的关键是掌握平移变换的性质,属于中考常考题型.5、【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”列方程组求出a、b的值,然后相加计算即可得解.【详解】解:∵点A(a+2b,1),B(﹣2,2a﹣b)关于y轴对称,∴,解得,∴a+b=.【点睛】本题考查了关于y轴对称的点的坐标特征,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.6、(1)图见解析,,,;(2)9【分析】利用网格特点和旋转的性质画出、、的对应点、、,从而得到;利用两个梯形的面积和减去一个三角形的面积计算四边形的面积.【详解】解:如图,为所作,各个顶点坐标为,,;如图,四边形的面积.【点睛】本题考查了作图旋转变换,根据旋转的性质画出转后对应的是解决问题的关键.7、(1)见解析;(2)画图见解析,点A1的坐标为(-4,1).【分析】(1)根据对称中心的性质可得对应点连线的交点即为对称中心;(2)根据题意作出A,B,C绕原点O旋转180°得到的点A1,B1,C1,然后顺次连接A1,B1,C1即可,根据点A1的在平面直角坐标系中的位置即可求得坐标.【详解】(1)如图所示,点O即为要求作的对称中心.(2)如图所示,△A1B1C1即为要求作的三角形,由点A1的在平面直角坐标系中的位置可得,点A1的坐标为(-4,1).【点睛】此题考查了平面直角坐标系中的几何旋转作图,中心对称的性质,解题的关键是熟练掌握中心对称的性质.8、(1)见解析;(2)见解析;(3)见解析【分析】(1)根据即可证明;(2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;(3)延长到,使,连接,,延长交于点,根据证明,得出,,故,由平行线的性质得出,进而推出,根据证明,故,,即可证明.【详解】(1)轴于点,轴于点,,,,,,;(2)如图2,过点作轴,交于点,,,轴,,,,,,,, 在与中,,,,即点为中点;(3)如图3,延长到,使,连接,,延长交于点,,,,,,,,,,,,,,,,,,,,,,即.【点睛】本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键.9、(1)见解析;(2)见解析;(3)4.【分析】(1)根据点坐标直接确定即可;(2)根据轴对称的性质得到点A′、B′、C′,顺次连线即可得到△A′B′C′;(3)利用面积加减法计算.(1)如图所示:(2)解:如图所示:(3)解:△ABC的面积:3×4﹣4×2﹣2×1﹣2×3=12﹣4﹣1﹣3=4,故答案为:4.【点睛】此题考查了确定直角坐标系,作轴对称图形,计算网格中图形的面积,正确掌握轴对称的性质及网格中图形面积的计算方法是解题的关键.10、(1)5;(2)见解析;(3)见解析【分析】(1)利用“补全矩形法”求解△ABC的面积;(2)找到A、B、C三点关于x轴的对称点,顺次连接可得△A1B1C1;(3)作点A关于y轴的对称点A',连接A'C,则A'C与y轴的交点即是点Q的位置.【详解】解:(1)如图所示:S△ABC=3×4-×2×2-×2×3-×4×1=5.(2)如图所示:(3)如图所示:【点睛】本题考查了轴对称作图及最短路径的知识,难度一般,解答本题注意“补全矩形法”求解格点三角形面积的应用.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时训练,共26页。试卷主要包含了点P关于原点对称的点的坐标是,在平面直角坐标系中,点A,已知点A等内容,欢迎下载使用。
这是一份2021学年第十五章 平面直角坐标系综合与测试课后练习题,共27页。试卷主要包含了点关于轴对称的点的坐标是,在平面直角坐标系中,点在等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后复习题,共27页。试卷主要包含了已知点A,点P关于y轴对称点的坐标是.等内容,欢迎下载使用。