沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试一课一练
展开七年级数学第二学期第十五章平面直角坐标系专项攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知点A(﹣2,a)和点B(2,﹣3)关于原点对称,则a的值为( )
A.2 B.﹣2 C.3 D.﹣3
2、在平面直角坐标系中,点(2,﹣5)关于x轴对称的点的坐标是( )
A.(2,5) B.(﹣2,5) C.(﹣2,﹣5) D.(2,﹣5)
3、如图,是由ABO平移得到的,点A的坐标为(-1,2),它的对应点的坐标为(3,4),ABO内任意点P(a,b)平移后的对应点的坐标为( )
A.(a,b) B.(-a,-b) C.(a+2,b+4) D.(a+4,b+2)
4、点(a,﹣3)关于原点的对称点是(2,﹣b),则a+b=( )
A.5 B.﹣5 C.1 D.﹣1
5、若点在第三象限,则点在( ).
A.第一象限 B.第二象限 C.第三象限 D.第四象限
6、点向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为( )
A. B. C. D.
7、点向上平移2个单位后与点关于y轴对称,则( ).
A.1 B. C. D.
8、如图所示,在平面直角坐标系中,点A(0,4),B(2,0),连接AB,点D为AB的中点,将点D绕着点A旋转90°得到点D的坐标为( )
A.(﹣2,1)或(2,﹣1) B.(﹣2,5)或(2,3)
C.(2,5)或(﹣2,3) D.(2,5)或(﹣2,5)
9、直角坐标系中,点A(-3,4)与点B(3,-4)关于( )
A.原点中心对称 B.轴轴对称 C.轴轴对称 D.以上都不对
10、如图,A、B两点的坐标分别为A(-2,-2)、B(4,-2),则点C的坐标为( )
A.(2,2) B.(0,0) C.(0,2) D.(4,5)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在平面直角坐标系中,若点P关于x轴的对称点Q的坐标是(﹣3,2),则点P关于y轴的对称点R的坐标是_____.
2、线段CD是由线段AB平移得到的,点的对应点为,则点的对应点D的坐标是______.
3、平面直角坐标系中,点P(3,-4)到x轴的距离是________.
4、已知点P(2,﹣3)与点Q(a,b)关于原点对称,则a+b=_____.
5、如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2022次得到正方形OA2022B2022C2022,如果点A的坐标为(1,0),那么点B2022的坐标为 ___.
三、解答题(10小题,每小题5分,共计50分)
1、(1)如图①所示,图中的两个三角形关于某点对称,请找出它们的对称中心O.
(2)如图②所示,已知△ABC的三个顶点的坐标分别为A(4,﹣1),B(1,1),C(3,﹣2).将△ABC绕原点O旋转180°得到△A1B1C1,请画出△A1B1C1,并写出点A1的坐标.
2、如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(1,3).
(1)请按下列要求画图:
①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;
②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.
(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请写出对称中心M点的坐标 .
3、如图
(1)敌方战舰C和我方战舰2号在我方潜艇什么方向?
(2)如何确定敌方战舰B的位置?
4、如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,0),B(﹣4,1),C(﹣2,2).
(1)直接写出点B关于原点对称的点B′的坐标: ;
(2)平移△ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的△A1B1C1;
(3)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C2.
5、如图,在平面直角坐标内,点A的坐标为(-4,0),点C与点A关于y轴对称.
(1)请在图中标出点A和点C;
(2)△ABC的面积是 ;
(3)在y轴上有一点D,且S△ACD=S△ABC,则点D的坐标为 .
6、多多和爸爸、妈妈周末到白银市金鱼公园动物园游玩,回到家后,她利用平面直角坐标系画出了白银市金鱼公园动物园的景区地图,如图所示.可是她忘记了在图中标出原点、x轴和y轴,只知道东北虎的坐标为.请你帮她画出平面直角坐标系,并写出其他各景点的坐标.
7、如图,在平面直角坐标系中有一个△ABC,顶点A(-1,3),B(2,0),C(-3,-1).
(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);点A关于x轴对称的点坐标为_______;点B关于y轴对称的点坐标为_______;
(2)若网格上的每个小正方形的边长为1,则△ABC的面积是_______.
8、如图,三角形的项点坐标分别为,,.
(1)画出三角形关于点的中心对称的,并写出点的坐标;
(2)画出三角形绕点顺时针旋转90°后的,并写出点的坐标.
9、如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(1,0),B(2,-3),C(4,-2).
(1)画出△ABC关于x轴的对称图形△A1B1C1;
(2)画出△A1B1C1向左平移3个单位长度后得到的△A2B2C2,并写出其顶点坐标;
(3)如果AC上有一点P(m,n)经过上述两次变换,那么对应A2C2上的点P2的坐标是__________________.
10、如图,在平面直角坐标系中,已知A(1,4)、B(3,1)、C(3,5),△ABC关于y轴的对称图形为△A1B1C1
(1)请画出△ABC关于y轴对称图形△A1B1C1,并写出三个顶点的坐标A1( ), B1( ),C1( )
(2)在y轴上取点D,使得△ABD为等腰三角形,这样的点D共有 个
-参考答案-
一、单选题
1、C
【分析】
根据两个点关于原点对称时,它们横、纵坐标均互为相反数,即可求出a的值.
【详解】
解:∵点A(﹣2,a)和点B(2,﹣3)关于原点对称,
∴a=3,
故选:C.
【点睛】
此题考查的是关于原点对称的两点坐标关系,掌握关于原点对称的两点坐标关系:横、纵坐标均互为相反数是解决此题的关键.
2、A
【分析】
根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),据此即可求得点A(2,﹣5)关于x轴对称的点的坐标.
【详解】
解:∵点(2,﹣5)关于x轴对称,
∴对称的点的坐标是(2,5).
故选:A.
【点睛】
本题主要考查了关于x轴对称点的性质,点P(x,y)关于x轴的对称点P′的坐标是(x,-y).
3、D
【分析】
根据点A的坐标和点的坐标确定平移规律,即可求出点P(a,b)平移后的对应点的坐标.
【详解】
解:∵△A′B′O′是由△ABO平移得到的,点A的坐标为(-1,2),它的对应点A′的坐标为(3,4),
∴△ABO平移的规律是:先向右移4个单位长度,再向上平移2个单位长度,
∴△ABO内任意点P(a,b)平移后的对应点P′的坐标为(a+4,b+2).
故选:D.
【点睛】
此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律.点向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;点向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小.
4、B
【分析】
根据关于原点对称的点的坐标特证构造方程-b=3,a=−2,再解方程即可得到a、b的值,进而可算出答案.
【详解】
解:∵点(a,﹣3)关于原点的对称点是(2,﹣b),
∴−b=3,a=−2,
解得:b=-3,a=−2,
则,
故选择B.
【点睛】
本题主要考查了关于原点对称的点的坐标:掌握关于原点对称的特征,两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(−x,−y).关键是利用对称性质构造方程.
5、A
【分析】
根据第三象限点的横坐标与纵坐标都是负数,然后判断点Q所在的象限即可.
【详解】
∵点P(m,n)在第三象限,
∴m<0,n<0,
∴-m>0,-n>0,
∴点在第一象限.
故选:A.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
6、C
【分析】
利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.
【详解】
解:点A的坐标为(3,5),将点A向上平移4个单位,再向左平移3个单位到点B,
点B的横坐标是:33=6,纵坐标为:5+4=1,
即(6,1).
故选:C.
【点睛】
本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.
7、D
【分析】
利用平移及关于y轴对称点的性质即可求解.
【详解】
解:把向上平移2个单位后得到点 ,
∵点与点关于y轴对称,
∴ , ,
∴ ,
∴,
故选:D.
【点睛】
本题考查坐标与图形变化平移、轴对称的性质及负整数指数幂,解题关键是掌握平移、轴对称的性质及负整数指数幂.
8、C
【分析】
分顺时针和逆时针旋转90°两种情况讨论,构造全等三角形即可求解.
【详解】
解:设点D绕着点A逆时针旋转90°得到点D1,
分别过点D,D1作轴的垂线,分别交轴于点C、E,如图:
根据旋转的性质得∠DAD1=90°,AD1=AD,
∴∠AED1=∠ACD=90°,
∴∠D1+∠EAD1=90°,∠EAD1 +∠DAC=90°,
∴∠D1=∠DAC,
∴△AD1E≌△DAC,
∴CD=AE,ED1=AC,
∵A(0,4),B(2,0),点D为AB的中点,
∴点D的坐标为(1,2),
∴CD=AE=1,ED1=AC=AO-OC=2,
∴点D1的坐标为(2,5);
设点D绕着点A顺时针旋转90°得到点D2,
同理,点D2的坐标为(-2,3),
综上,点D绕着点A旋转90°得到点D的坐标为(-2,3)或(2,5),
故选:C.
【点睛】
本题考查了坐标与图形的变化-旋转,全等三角形的判定和性质,根据平面直角坐标系确定出点D1和D2的位置是解题的关键.
9、A
【分析】
观察点A与点B的坐标,依据关于原点中心对称的点,横坐标与纵坐标都互为相反数可得答案.
【详解】
根据题意,易得点(-3,4)与(3,-4)的横、纵坐标互为相反数,则这两点关于原点中心对称.
故选A.
【点睛】
本题考查在平面直角坐标系中,关于原点中心对称的两点的坐标之间的关系.掌握关于原点对称的点,横坐标与纵坐标都互为相反数是解答本题的关键.
10、B
【分析】
根据A、B两点的坐标建立平面直角坐标系即可得到C点坐标.
【详解】
解:∵A点坐标为(-2,-2),B点坐标为(4,-2),
∴可以建立如下图所示平面直角坐标系,
∴点C的坐标为(0,0),
故选B.
【点睛】
本题主要考查了写出坐标系中点的坐标,解题的关键在于能够根据题意建立正确的平面直角坐标系.
二、填空题
1、
【分析】
根据题意直接利用关于x轴、y轴对称点的性质进行分析即可得出答案.
【详解】
解:∵点P关于x轴的对称点Q的坐标是(﹣3,2),
∴点P的坐标为(﹣3,﹣2),
∴点P关于y轴的对称点R的坐标是(3,﹣2),
故答案为:(3,﹣2).
【点睛】
本题主要考查关于x轴、y轴对称点的性质,正确掌握横、纵坐标的关系是解题的关键.
2、
【分析】
点的对应点为,确定平移方式,先向右平移5个单位长度,再向上平移3个单位长度,从而结合可得其对应点的坐标.
【详解】
解: 线段CD是由线段AB平移得到的,点的对应点为,
而
,
故答案为:
【点睛】
本题考查的是坐标系内点的平移,掌握由坐标的变化确定平移方式,再由平移方式得到对应点的坐标是解本题的关键.
3、4
【分析】
根据点的坐标表示方法得到点P(3,﹣4)到x轴的距离是纵坐标的绝对值即|﹣4|,然后去绝对值即可.
【详解】
解:点P(3,-4)到x轴的距离为|﹣4|=4.
故答案为:4.
【点睛】
此题主要考查了点到坐标上的距离,正确掌握点的坐标性质是解题关键.
4、1
【分析】
根据两点关于原点对称,横纵坐标分别互为相反数计算即可.
【详解】
解:∵点与点关于原点对称,
∴a=-2,b= 3,
∴a+b=-2+3=1,
故答案为:1.
【点睛】
本题考查了坐标系中两点关于原点对称的计算,代数式的值,熟练掌握两点关于原点对称时坐标之间的关系是解题的关键.
5、(1,﹣1)
【分析】
先利用勾股定理以及正方形、旋转的性质求出对应边长,再通过边长找出对应的前几个坐标,会发现:关于B的坐标,是每8个一循环,找到第2022个是对应的循环中的第6个,从而确定B2022坐标.
【详解】
∵点A的坐标为(1,0),
∴OA=1,
∵四边形OABC是正方形,
∴∠OAB=90°,AB=OA=1,
∴B(1,1),
连接OB,如图:
由勾股定理得:OB=,
由旋转的性质得:OB=OB1=OB2=OB3=…=,
∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,
相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,
∴B1(0,),B2(﹣1,1),B3(﹣,0),B4(﹣1,﹣1),B5(0,﹣),B6(1,﹣1),…,
发现是8次一循环,则2022÷8=252…6,
∴点B2022的坐标为(1,﹣1),
故答案为:(1,﹣1).
【点睛】
本题主要是图形旋转类的坐标规律问题,利用图形以及旋转的性质求出对应前几个相应点的坐标,从而发现其中规律,应用规律进行求解是解决此类问题的关键.
三、解答题
1、(1)见解析;(2)画图见解析,点A1的坐标为(-4,1).
【分析】
(1)根据对称中心的性质可得对应点连线的交点即为对称中心;
(2)根据题意作出A,B,C绕原点O旋转180°得到的点A1,B1,C1,然后顺次连接A1,B1,C1即可,根据点A1的在平面直角坐标系中的位置即可求得坐标.
【详解】
(1)如图所示,点O即为要求作的对称中心.
(2)如图所示,△A1B1C1即为要求作的三角形,
由点A1的在平面直角坐标系中的位置可得,
点A1的坐标为(-4,1).
【点睛】
此题考查了平面直角坐标系中的几何旋转作图,中心对称的性质,解题的关键是熟练掌握中心对称的性质.
2、(1)①见解析;②见解析;(2)M(2,1)
【分析】
(1)①利用平移变换的性质分别作出A,B,C的对应点A1,B1,C1即可;
②利用中心对称的性质分别作出A,B,C的对应点A2,B2,C2即可;
(3)对应点连线的交点M即为所求.
【详解】
解:(1)①如图,△A1B1C1即为所求;
②如图,△A2B2C2即为所求;
(2)如图,点M即为所求,M(2,1),
故答案为:(2,1).
【点睛】
本题考查作图−旋转变换,平移变换等知识,解题的关键是掌握旋转变换,平移变换的性质,属于中考常考题型.
3、(1)敌方战舰C和我方战舰2号在我方潜艇的正东方;(2)要确定敌方战舰B的位置,需要敌方战舰B与我方潜艇的方向和距离两个数据.
【分析】
(1)根据图中的位置与方向即可确定.
(2)要确定每艘战舰的位置,需要知道每艘战舰分别在什么方向和与我方潜艇的距离是多少.
【详解】
(1)由图像可知,敌方战舰C和我方战舰2号在我方潜艇正东方.
(2)仅知道在我方潜艇北偏东40°方向有小岛,而要确定敌方战舰B的位置,还需要敌方战舰B与我方潜艇的方向和距离两个数据.
【点睛】
本题考查了方向角的表示,方向角:指正北或指正南方向线与目标方向线所成的小于的角叫做方向角.
4、(1)(4,﹣1);(2)见解析;(3)见解析.
【分析】
(1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;
(2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;
(3)将三个点分别绕原点O逆时针旋转90°后得到对应点,再首尾顺次连接即可.
【详解】
(1)点B关于原点对称的点B′的坐标为(4,﹣1),
故答案为:(4,﹣1);
(2)如图所示,△A1B1C1即为所求.
(3)如图所示,△A2B2C2即为所求.
【点睛】
本题主要考查作图—平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点.
5、(1)作图见解析;(2)16;(3)(0,4)或(0,-4).
【分析】
(1)如图所示,由点C与点A关于y轴对称可知C坐标为(4,0),描点画图即可.
(2)得出△ABC的底和高再由三角形面积公式计算即可.
(3)S△ACD=S△ABC为同底不同高,故由(2)问知,再由点D在y轴上知D点坐标为(0,4)或(0,-4).
【详解】
解:(1)如图所示,点A为(-4,0),
∵点C与点A关于y轴对称
∴点C坐标为(4,0)
(2)由×底×高有
(3)∵S△ACD=S△ABC,AC=AC
∴
即D点的纵坐标为4或-4
又∵D点在y轴上
故D点坐标为(0,4)或(0,-4).
【点睛】
本题考查了坐标轴中的点坐标问题、轴对称问题、求三角形面积,解题的关键是要运用数形结合的思想.
6、两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5)
【分析】
先利用东北虎的坐标找到坐标原点,然后以坐标原点建系,进而找出其他景点的坐标.
【详解】
解:由东北虎的坐标可知:坐标原点即为南门,以南门为坐标原点建系,如下图所示:
故:两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5).
【点睛】
本题主要是考查了写出直角坐标系中的点的坐标,解题的关键通过已知条件,找到坐标原点,进而才能求出其他点的坐标.
7、(1)图见解析,(-1,-3),(-2,0);(2)9
【分析】
(1)根据题意直接利用关于坐标轴对称点的性质得出各对应点位置即可;
(2)由题意利用△ABC所在矩形面积减去周围三角形面积进行计算进而得出答案.
【详解】
解:(1)如图,△A1B1C1即为所作,
点A关于x轴对称的点坐标为 (-1,-3);
点B关于y轴对称的点坐标为:(-2,0);
故答案为:(-1,-3),(-2,0);
(2)△ABC的面积是:4×5-×2×4-×3×3-×1×5=9.
故答案为:9.
【点睛】
本题主要考查轴对称变换以及求三角形面积-补全法,根据题意得出对应点位置是解题的关键.
8、(1)图见解析,;(2)图见解析,
【分析】
(1)写出,,关于原点对称的点,,,连接即可;
(2)连接OC,OB,根据旋转的90°可得,,,,,即可;
【详解】
(1),,关于原点对称的点,,,作图如下;
(2)连接OC,OB,根据旋转的90°可得,,,,,,其中点C2的坐标是(3,-1),作图如下:
【点睛】
本题主要考查了平面直角坐标系中图形的旋转,作关于原点对称的图形,准确分析作图是解题的关键.
9、(1)见解析;(2)A2(-2,0),B2(-1,3),C2(1,2),(3)P(m-3,-n)
【分析】
(1)直接利用关于轴对称点的性质得出答案;
(2)利用平移的性质可直接进行作图,然后由图象可得各个顶点的坐标;
(3)直接利用平移变换的性质得出点的坐标.
【详解】
解:(1)如图所示:△就是所要求作的图形;
(2)如图所示:△就是所要求作的图形,其顶点坐标为A2(-2,0),B2(-1,3),C2(1,2);
(3)如果上有一点经过上述两次变换,那么对应上的点的坐标是:.
故答案为:.
【点睛】
此题主要考查了平移变换以及轴对称变换,正确得出对应点位置是解题关键.
10、(1)见解析;-1,4 ;-3,1;-3,5;(2)5
【分析】
(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;
(2)分AB为腰和AB为底分别求解可得.
【详解】
解:(1)如图所示,△A1B1C1即为所求.
A1(-1,4) ;B1(-3,1);C1(-3,5);
故答案为:-1,4 ;-3,1;-3,5;
(2)以点A为顶点、AB为腰的等腰三角形ABD,且点D在y轴上的有2个;
以点B为顶点,BA为腰的等腰△ABD,且点D在y轴上的有2个;
以AB为底边的等腰三角形,且点D在y轴上的点只有1个;
所以这样的点D共有5个,
故答案为:5.
【点睛】
本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质,并据此得出变换后的对应点.
2020-2021学年第十五章 平面直角坐标系综合与测试课后练习题: 这是一份2020-2021学年第十五章 平面直角坐标系综合与测试课后练习题,共28页。试卷主要包含了若平面直角坐标系中的两点A,若点P,点在第四象限,则点在第几象限,在平面直角坐标系中,点P等内容,欢迎下载使用。
初中数学第十五章 平面直角坐标系综合与测试课堂检测: 这是一份初中数学第十五章 平面直角坐标系综合与测试课堂检测,共28页。试卷主要包含了已知点A,点A个单位长度.等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后作业题: 这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后作业题,共25页。试卷主要包含了点P关于原点对称的点的坐标是,在平面直角坐标系中,点A等内容,欢迎下载使用。