初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后复习题
展开七年级数学第二学期第十五章平面直角坐标系同步练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在平面直角坐标系中,点P的位置如图所示,则点P的坐标可能是( )
A.(4,2) B.(﹣4,2) C.(﹣4,﹣2) D.(2,4)
2、若在第一象限的ABC关于某条直线对称后的DEF在第四象限,则这条直线可以是( )
A.直线x=﹣1 B.x轴 C.y轴 D.直线x=
3、点向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为( )
A. B. C. D.
4、已知点A(x+2,x﹣3)在y轴上,则x的值为( )
A.﹣2 B.3 C.0 D.﹣3
5、在平面直角坐标系中,点的坐标是,点与点关于轴对称,则点的坐标是( )
A. B. C. D.
6、点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为( )
A.(-4,3) B.(4,-3) C.(-3,4) D.(3,-4)
7、如图所示,在平面直角坐标系中,点A(0,4),B(2,0),连接AB,点D为AB的中点,将点D绕着点A旋转90°得到点D的坐标为( )
A.(﹣2,1)或(2,﹣1) B.(﹣2,5)或(2,3)
C.(2,5)或(﹣2,3) D.(2,5)或(﹣2,5)
8、点P(﹣1,2)关于y轴对称点的坐标是( ).
A.(1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)
9、在平面直角坐标系中,点A的坐标为(﹣4,3),若AB∥x轴,且AB=5,当点B在第二象限时,点B的坐标是( )
A.(﹣9,3) B.(﹣1,3) C.(1,﹣3) D.(1,3)
10、若点在第三象限,则点在( ).
A.第一象限 B.第二象限 C.第三象限 D.第四象限
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在平面直角坐标系中,若点P关于x轴的对称点Q的坐标是(﹣3,2),则点P关于y轴的对称点R的坐标是_____.
2、点P(﹣2,﹣4)关于y轴对称的点的坐标是_________.
3、若点在y轴上,则m=_____.
4、在平面直角坐标系中,轰炸机机群的一个飞行队形如图所示,若其中两架轰炸机的坐标分别表示为A(1,3)、B(3,1),则轰炸机C的坐标是_________.
5、在平面直角坐标系中,点A(m,﹣4)与点B(﹣5,n)关于y轴对称,则点(m,n)在第 _____象限.
三、解答题(10小题,每小题5分,共计50分)
1、如图,在平面直角坐标系中,ABC的顶点坐标为A(﹣1,1),B(﹣3,2),C(﹣2,4).
(1)在图中作出ABC向右平移4个单位,再向下平移5个单位得到的A1B1C1;
(2)在图中作出A1B1C1关于y轴对称的A2B2C2;
(3)经过上述平移变换和轴对称变换后,ABC内部的任意一点P(a,b)在A2B2C2内部的对应点P2的坐标为 .
2、如图是某地火车站及周围的简单平面图.(图中每个小正方形的边长代表1千米)
(1)请以火车站所在的位置为坐标原点,以图中小正方形的边长为单位长度,建立平面直角坐标系,并写出体育场A、超市B、市场C、文化宫D的坐标;
(2)在(1)中所建的坐标平面内,若学校E的位置是(﹣3,﹣3),请在图中标出学校E的位置.
3、△ABC在平面直角坐标系中的位置如图所示,已知A(﹣2,3),B(﹣3,1),C(﹣1,2).
(1)画出△ABC绕点O逆时针旋转90°后得到的△A1B1C1;
(2)画出△ABC关于原点O的对称图形△A2B2C2;
(3)直接写出下列点的坐标:A1 ,B2 .
4、多多和爸爸、妈妈周末到白银市金鱼公园动物园游玩,回到家后,她利用平面直角坐标系画出了白银市金鱼公园动物园的景区地图,如图所示.可是她忘记了在图中标出原点、x轴和y轴,只知道东北虎的坐标为.请你帮她画出平面直角坐标系,并写出其他各景点的坐标.
5、如图,在平面直角坐标系中,已知点A(2,﹣2),点P是x轴上的一个动点.
(1)A1,A2分别是点A关于原点的对称点和关于y轴对称的点,直接写出点A1,A2的坐标,并在图中描出点A1,A2.
(2)求使△APO为等腰三角形的点P的坐标.
6、如图,在平面直角坐标系中,已知△ABC.
(1)将△ABC向下平移6个单位,得,画出;
(2)画出△ABC关于y轴的对称图形;
(3)连接,并直接写出△A1A2C2的面积.
7、如图,在平面直角坐标系中,的三个顶点都在格点上,点的坐标为,请回答下列问题.
(1)画出关于x轴对称的,并写出点的坐标(___,___)
(2)点P是x轴上一点,当的长最小时,点P坐标为______;
(3)点M是直线BC上一点,则AM的最小值为______.
8、如图,已知△ABC各顶点的坐标分别为A(-3,2),B(-4,-3),C(-1,-1).
(1)请在图中画出△ABC关于y轴对称的△A1B1C1,
(2)并写出△A1B1C1的各点坐标.
9、如图,在平面直角坐标系中,已知点A(1,4),B(4,4),C(2,1).
(1)请在图中画出ABC;
(2)将ABC向左平移5个单位,再沿x轴翻折得到A1B1C1,请在图中画出A1B1C1;
(3)若ABC 内有一点P(a,b),则点P经上述平移、翻折后得到的点P1的坐是 .
10、如图所示的方格纸中每个小方格都是边长为1个单位的正方形,建立如图所示的平面直角坐标系.
(1)请写出△ABC各点的坐标A B C ;
(2)若把△ABC向上平移2个单位,再向右平移2个单位得,在图中画出,
(3)求△ABC 的面积
-参考答案-
一、单选题
1、A
【分析】
根据点在第一象限,结合第一象限点的横纵坐标都为正的进而即可判断
【详解】
解:由题意可知,点P在第一象限,且横坐标大于纵坐标,
A.(4,2)在第一象限,且横坐标大于纵坐标,故本选项符合题意;
B.(﹣4,2)在第二象限,故本选项符合题意;
C.(﹣4,﹣2)在第三象限,故本选项符合题意;
D.(2,4)在第一象限,但横坐标小于纵坐标,故本选项符合题意;
故选:A.
【点睛】
本题考查了各象限点的坐标特征,掌握各象限点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.
2、B
【分析】
根据轴对称的性质判断即可.
【详解】
解:若在第一象限的ABC关于某条直线对称后的DEF在第四象限,则这条直线可以是x轴
故选:B.
【点睛】
本题考察了轴对称的性质,利用轴对称的性质找出对称轴是本题的关键.
3、C
【分析】
利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.
【详解】
解:点A的坐标为(3,5),将点A向上平移4个单位,再向左平移3个单位到点B,
点B的横坐标是:33=6,纵坐标为:5+4=1,
即(6,1).
故选:C.
【点睛】
本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.
4、A
【分析】
根据y轴上点的横坐标为0列方程求解即可.
【详解】
解:∵点A(x+2,x﹣3)在y轴上,
∴x+2=0,
解得x=-2.
故选:A.
【点睛】
本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.
5、C
【分析】
根据关于轴对称的点坐标的特征:纵坐标不变,横坐标互为相反数,即可求解.
【详解】
解:点的坐标是,点与点关于轴对称,
的坐标为,
故选:C.
【点睛】
本题主要是考查了关于轴对称的点坐标的特征,熟练掌握关于坐标轴对称的点的特征,是解决该类问题的关键.
6、C
【分析】
根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.
【详解】
解:∵点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,
∴点P的横坐标是-3,纵坐标是4,
∴点P的坐标为(-3,4).
故选C.
【点睛】
本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.
7、C
【分析】
分顺时针和逆时针旋转90°两种情况讨论,构造全等三角形即可求解.
【详解】
解:设点D绕着点A逆时针旋转90°得到点D1,
分别过点D,D1作轴的垂线,分别交轴于点C、E,如图:
根据旋转的性质得∠DAD1=90°,AD1=AD,
∴∠AED1=∠ACD=90°,
∴∠D1+∠EAD1=90°,∠EAD1 +∠DAC=90°,
∴∠D1=∠DAC,
∴△AD1E≌△DAC,
∴CD=AE,ED1=AC,
∵A(0,4),B(2,0),点D为AB的中点,
∴点D的坐标为(1,2),
∴CD=AE=1,ED1=AC=AO-OC=2,
∴点D1的坐标为(2,5);
设点D绕着点A顺时针旋转90°得到点D2,
同理,点D2的坐标为(-2,3),
综上,点D绕着点A旋转90°得到点D的坐标为(-2,3)或(2,5),
故选:C.
【点睛】
本题考查了坐标与图形的变化-旋转,全等三角形的判定和性质,根据平面直角坐标系确定出点D1和D2的位置是解题的关键.
8、A
【分析】
平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(-x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出A的对称点的坐标,从而可以确定所在象限.
【详解】
解:∵点P(-1,2)关于y轴对称,
∴点P(-1,2)关于y轴对称的点的坐标是(1,2).
故选:A.
【点睛】
本题主要考查了平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.
9、A
【分析】
根据平行及线段长度、点B在第二象限,可判断点B一定在点A的左侧,且两个点纵坐标相同,再由线段长即可确定点B的坐标.
【详解】
解:∵轴,且,点B在第二象限,
∴点B一定在点A的左侧,且两个点纵坐标相同,
∴,即,
故选:A.
【点睛】
题目主要考查坐标系中点的坐标,理解题意,掌握坐标系中点的特征是解题关键.
10、A
【分析】
根据第三象限点的横坐标与纵坐标都是负数,然后判断点Q所在的象限即可.
【详解】
∵点P(m,n)在第三象限,
∴m<0,n<0,
∴-m>0,-n>0,
∴点在第一象限.
故选:A.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
二、填空题
1、
【分析】
根据题意直接利用关于x轴、y轴对称点的性质进行分析即可得出答案.
【详解】
解:∵点P关于x轴的对称点Q的坐标是(﹣3,2),
∴点P的坐标为(﹣3,﹣2),
∴点P关于y轴的对称点R的坐标是(3,﹣2),
故答案为:(3,﹣2).
【点睛】
本题主要考查关于x轴、y轴对称点的性质,正确掌握横、纵坐标的关系是解题的关键.
2、(2,﹣4)
【分析】
根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.
【详解】
解:点P(-2,-4)关于y轴对称的点的坐标是(2,-4).
故答案为:(2,-4).
【点睛】
本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.
3、-4
【分析】
在轴上点的坐标,横坐标为,可知,进而得到的值.
【详解】
解:在轴上
故答案为:.
【点睛】
本题考察了坐标轴上点坐标的特征.解题的关键在于理解轴上点坐标的形式.在轴上点的坐标,横坐标为;在轴上点的坐标,纵坐标为.
4、
【分析】
直接利用已知点坐标得出原点位置,进而得出答案.
【详解】
解:如图所示,建立平面直角坐标系,
∴轰炸机C的坐标为(-1,-2),
故答案为:(-1,-2).
【点睛】
此题主要考查了坐标确定位置,正确得出原点位置建立坐标系是解题关键..
5、四
【分析】
先根据关于y轴对称的点的特征:纵坐标相同,横坐标互为相反数求出m、n的值,再根据每个象限内点的坐标特点求解即可.
【详解】
解:∵点A(m,﹣4)与点B(﹣5,n)关于y轴对称,
∴m=5,n=-4,
∴点(m,n)即点(5,-4)在第四象限,
故答案为:四.
【点睛】
本题主要考查了关于y轴对称的点的坐标特征,根据点的坐标判断点所在的象限,熟练掌握关于y轴对称的点的坐标特征是解题的关键.
三、解答题
1、(1)见解析;(2)见解析;(3)(﹣a﹣4,b﹣5)
【分析】
(1)利用平移变换的性质分别作出A,B,C 的对应点A1,B1,C1即可;
(2)利用轴对称变换的性质分别作出A1,B1,C1的对应点A2,B2,C2即可;
(3)利用平移变换的性质,轴对称变换的性质解决问题即可.
【详解】
解:(1)如图,△A1B1C1即为所求;
(2)如图,△A2B2C2即为所求;
(3)由题意得:P(﹣a﹣4,b﹣5).
故答案为:(﹣a﹣4,b﹣5);
【点睛】
本题考查作图−轴对称变换,平移变换的性质等知识,解题的关键是掌握轴对称的性质,平移变换的性质,属于中考常考题型.
2、(1)见解析,体育场A的坐标为(﹣4,3)、超市B的坐标为(0,4)、市场C的坐标为(4,3)、文化宫D的坐标为(2,﹣3);(2)见解析
【分析】
(1)以火车站所在的位置为坐标原点,建立平面直角坐标系,即可表示出体育场A、超市B市场C、文化宫D的坐标.
(2)根据点的坐标的意义描出点E.
【详解】
解:(1)平面直角坐标系如图所示,体育场A的坐标为(﹣4,3)、超市B的坐标为(0,4)、市场C的坐标为(4,3)、文化宫D的坐标为(2,﹣3).
(2)如图,点E即为所求.
【点睛】
本题考查了坐标确定位置,主要是对平面直角坐标系的定义和点的坐标的写法的考查,是基础题.
3、(1)见解析;(2)见解析;(3)(-3,-2),(3,-1)
【分析】
(1)先根据网格找到A、B、C的对应点A1、B1、C1,然后顺次连接A1、B1、C1即可;
(2)先根据网格找到A、B、C的对应点A2、B2、C2,然后顺次连接A2、B2、C2即可;
(3)根据(1)(2)说画图形求解即可.
【详解】
解:(1)如图所示,即为所求;
(2)如图所示,即为所求;
(3)由图可知,的坐标为(-3,-2),的坐标为(3,-1),
故答案为:(-3,-2);(3,-1).
【点睛】
本题主要考查了坐标与图形变化—旋转变化,轴对称变化,画旋转图形和轴对称图形,解题的关键在于能够熟练掌握相关知识进行求解.
4、两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5)
【分析】
先利用东北虎的坐标找到坐标原点,然后以坐标原点建系,进而找出其他景点的坐标.
【详解】
解:由东北虎的坐标可知:坐标原点即为南门,以南门为坐标原点建系,如下图所示:
故:两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5).
【点睛】
本题主要是考查了写出直角坐标系中的点的坐标,解题的关键通过已知条件,找到坐标原点,进而才能求出其他点的坐标.
5、(1)A1(﹣2,2),A1(﹣2,﹣2),见解析;(2)P点坐标为(﹣2,0)或(2,0)或(4,0)或(2,0)
【分析】
(1)利用关于原点对称和y轴对称的点的坐标特征写出点A1,A2的坐标,然后描点;
(2)先计算出OA的长,再分类讨论:当OP=OA或AP=AO或PO=PA时,利用直角坐标系分别写出对应的P点坐标.
【详解】
解:(1)A1(﹣2,2),A1(﹣2,﹣2),如图,
(2)如图,设P点坐标为(t,0),
,
当OP=OA时,P点坐标为或;
当AP=AO时,P点坐标为(4,0),
当PO=PA时,P点坐标为(2,0),
综上所述,P点坐标为或或(4,0)或(2,0).
【点睛】
本题考查的是轴对称的性质,中心对称的性质,坐标与图形,等腰三角形的定义,清晰的分类讨论是解本题的关键.
6、(1)见解析;(2)见解析;(3)见解析,7
【分析】
(1)依据平移的方向和距离,即可得到;
(2)依据轴对称的性质,即可得到;
(3)依据割补法进行计算,即可得到△A1A2C2的面积.
【详解】
(1)如图所示,即为所求;
(2)如图所示,即为所求;
(3)如图所示,△A1A2C2即为所求作的三角形,
△A1A2C2的面积=3×6-×2×3-×2×6-×1×4
=18-3-6-2
=7.
【点睛】
本题考查作图−平移变换,轴对称变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
7、(1)5,-3;(2)(,0);(3)
【分析】
(1)利用关于x轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;
(2)连接BC1交x轴于点P,利用两点之间线段最短可判断P点满足条件,利用待定系数法求得直线BC1的解析式,即可求解;
(3)利用割补法求得△ABC的面积,利用两点之间的距离公式求得BC的长,再利用面积法即可求解.
【详解】
解:(1)如图,△A1B1C1为所作,点C1的坐标为(5,-3);
故答案为:5,-3;
(2)如图,点P为所作.
设直线BC1的解析式为y=kx+b,
∵点C1的坐标为(5,-3),点B的坐标为(1,2),
∴,解得:,
∴直线BC1的解析式为y=x+,
当y=0时,x=,
∴点P的坐标为(,0);
故答案为:(,0);
(3)根据垂线段最短,当AM垂直BC时,垂线段AM取得最小值,
△ABC的面积为2×4-×2×1-×4×1-×3×1=;
BC=,
∵××AM=,
∴AM=.
故答案为:.
【点睛】
本题考查了作图-轴对称变换:几何图形都可看作是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题.注意:关于x轴对称的点,横坐标相同,纵坐标互为相反数.
8、(1)见解析;(2)A1(3,2),B1(4,-3),C1(1,-1).
【分析】
(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可;
(2)根据所作图形可得答案.
【详解】
解:(1)如图所示,△A1B1C1即为所求作.
(2)由图可知,A1(3,2),B1(4,-3),C1(1,-1).
【点睛】
本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点.注意:关于x轴对称的点,横坐标相同,纵坐标互为相反数.
9、(1)见解析;(2)见解析;(3)(a-5,-b)
【分析】
(1)结合直角坐标系,可找到三点的位置,顺次连接即可得出△ABC.
(2)将各点分别向左平移5个单位长度,再作出关于x轴的对称点,顺次连接即可得到A1B1C1;
(3)根据点的坐标平移规律可得结论.
【详解】
解:(1)如图,ABC即为所画.
(2)如图,A1B1C1即为所画.
(3)点P(a,b)向左平移5个单位后的坐标为(a-5,b),关于x轴对称手点的坐标为(a-5,-b).
故答案为:(a-5,-b)
【点睛】
此题考查了平移作图、轴对称变换以及直角坐标系的知识,解答本题的关键是掌握平移和轴对称的特点,找到各点在直角坐标系的位置.
10、(1);(2)见解析;(3)7
【分析】
(1)根据平面直角坐标系直接写出点的坐标即可;
(2)分别将点的横坐标和纵坐标都加2得到,并顺次连接,则即为所求
(3)根据长方形减去三个三角形的面积即可求得△ABC 的面积
【详解】
(1)根据平面直角坐标系可得
故答案为:
(2)如图所示,分别将点的横坐标和纵坐标都加2得到,并顺次连接,则即为所求
(3)的面积等于
【点睛】
本题考查了坐标与图形,平移作图,掌握平移的性质是解题的关键.
沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试复习练习题: 这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试复习练习题,共27页。试卷主要包含了在平面直角坐标系中,点A,将点P,点在,点在第四象限,则点在第几象限等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试测试题: 这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试测试题,共30页。试卷主要包含了点P关于y轴对称点的坐标是.,一只跳蚤在第一象限及x轴,已知A等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试一课一练: 这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试一课一练,共27页。试卷主要包含了在平面直角坐标系中,点,点在,平面直角坐标系内一点P,点A的坐标为,则点A在,点P的坐标为等内容,欢迎下载使用。