


冀教版九年级下册第29章 直线与圆的位置关系综合与测试课堂检测
展开
这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试课堂检测,共34页。
九年级数学下册第二十九章直线与圆的位置关系同步测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、的半径为5 , 若直线与该圆相交, 则圆心到直线的距离可能是 ( )
A.3 B.5 C.6 D.10
2、如图,在Rt△ABC中,,,,以边上一点为圆心作,恰与边,分别相切于点,,则阴影部分的面积为( )
A. B. C. D.
3、已知正五边形的边长为1,则该正五边形的对角线长度为( ).
A. B. C. D.
4、如图,AB是⊙O的直径,BD与⊙O相切于点B,点C是⊙O上一点,连接AC并延长,交BD于点D,连接OC,BC,若∠BOC=50°,则∠D的度数为( )
A.50° B.55° C.65° D.75°
5、已知是正六边形的外接圆,正六边形的边心距为,将图中阴影部分的扇形围成一个圆锥的侧面,则该圆锥的底面圆的半径为( )
A.1 B. C. D.
6、如图,BE是的直径,点A和点D是上的两点,过点A作的切线交BE延长线于点C,若,则的度数是( )
A.18° B.28° C.36° D.45°
7、如图,中,,O是AB边上一点,与AC、BC都相切,若,,则的半径为( )
A.1 B.2 C. D.
8、如图,在矩形ABCD中,点E在CD边上,连接AE,将沿AE翻折,使点D落在BC边的点F处,连接AF,在AF上取点O,以O为圆心,线段OF的长为半径作⊙O,⊙O与AB,AE分别相切于点G,H,连接FG,GH.则下列结论错误的是( )
A. B.四边形EFGH是菱形
C. D.
9、平面内,⊙O的半径为3,若点P在⊙O外,则OP的长可能为( )
A.4 B.3 C.2 D.1
10、下列说法正确的是( )
A.三点确定一个圆 B.任何三角形有且只有一个内切圆
C.相等的圆心角所对的弧相等 D.正多边形一定是中心对称图形
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知的半径为5,点A到点O的距离为7,则点A在圆______.(填“内”或“上”或“外”)
2、如图,PB与⊙O相切于点B,OP与⊙O相交于点A,∠P=30°,若⊙O的半径为2,则OP的长为 _____.
3、如图,点O是的AB边上一点,,以OB长为半径作,与AC相切于点D.若,,则的半径长为______.
4、如图,五边形是⊙的内接正五边形,则的度数是____.
5、如图,PA、PB是⊙O的切线,A、B为切点,∠OAB=30°.则∠APB=________度;
三、解答题(5小题,每小题10分,共计50分)
1、如图,AB为的切线,B为切点,过点B作,垂足为点E,交于点C,连接CO,并延长CO与AB的延长线交于点D,与交于点F,连接AC.
(1)求证:AC为的切线:
(2)若半径为2,.求阴影部分的面积.
2、如图,是的直径,是圆上两点,且有,连结,作的延长线于点.
(1)求证:是的切线;
(2)若,求阴影部分的面积.(结果保留)
3、如图,AB是ΘO的直径,弦AD平分∠BAC,过点D作DE⊥AC,垂足为E.
(1)判断DE所在直线与ΘO的位置关系,并说明理由;
(2)若AE=4,ED=2,求ΘO的半径.
4、苏科版教材八年级下册第94页第19题,小明在学过圆之后,对该题进行重新探究,请你和他一起完成问题探究.
【问题探究】小明把原问题转化为动点问题,如图1,在边长为6cm的正方形ABCD中,点E从点A出发,沿边AD向点D运动,同时,点F从点B出发,沿边BA向点A运动,它们的运动速度都是2cm/s,当点E运动到点D时,两点同时停止运动,连接CF、BE交于点M,设点E, F运动时问为t秒.
(1)【问题提出】如图1,点E,F分别在方形ABCD中的边AD、AB上,且,连接BE、CF交于点M,求证:.请你先帮小明加以证明.
(2)如图1,在点E、F的运动过程中,点M也随之运动,请直接写出点M的运动路径长 cm.
(3)如图2,连接CE,在点E、F的运动过程中.
①试说明点D在△CME的外接圆O上;
②若①中的O与正方形的各边共有6个交点,请直接写出t的取值范围.
5、如图,中,.
(1)用直尺和圆规作,使圆心在边上,且与、所在直线相切(不写作法,保留作图痕迹);
(2)在(1)的条件下,再从以下两个条件①“,的周长为12cm;②,”中选择一个作为条件,并求的半径.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据直线l和⊙O相交⇔d<r,即可判断.
【详解】
解:∵⊙O的半径为5,直线l与⊙O相交,
∴圆心D到直线l的距离d的取值范围是0≤d<5,
故选:A.
【点睛】
本题考查直线与圆的位置关系,解题的关键是记住①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.
2、A
【解析】
【分析】
连结OC,根据切线长性质DC=AC,OC平分∠ACD,求出∠OCD=∠OCA==30°,利用在Rt△ABC中,AC=ABtanB=3×,在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,,再求出扇形面积,利用割补法求即可.
【详解】
解:连结OC,
∵以边上一点为圆心作,恰与边,分别相切于点A, ,
∴DC=AC,OC平分∠ACD,
∵,,
∴∠ACD=90°-∠B=60°,
∴∠OCD=∠OCA==30°,
在Rt△ABC中,AC=ABtanB=3×,
在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,
∴OD=OA=1,DC=AC=,
∴,,
∵∠DOC=360°-∠OAC-∠ACD-∠ODC=360°-90°-90°-60°=120°,
∴,
S阴影=.
故选择A.
【点睛】
本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.
3、C
【解析】
【分析】
如图,五边形ABCDE为正五边形, 证明 再证明可得:设AF=x,则AC=1+x,再解方程即可.
【详解】
解:如图,五边形ABCDE为正五边形,
∴五边形的每个内角均为108°,
∴∠BAG=∠ABF=∠ACB=∠CBD= 36°,
∴∠BGF=∠BFG=72°,
设AF=x,则AC=1+x,
解得:,
经检验:不符合题意,舍去,
故选C
【点睛】
本题考查的是正多边形的性质,等腰三角形的判定与性质,相似三角形的判定与性质,证明是解本题的关键.
4、C
【解析】
【分析】
首先证明∠ABD=90°,由∠BOC=50°,根据圆周角定理求出∠A的度数即可解决问题.
【详解】
解:∵BD是切线,
∴BD⊥AB,
∴∠ABD=90°,
∵∠BOC=50°,
∴∠A=∠BOC=25°,
∴∠D=90°﹣∠A=65°,
故选:C.
【点睛】
本题考查的是切线的性质、圆周角定理,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.
5、C
【解析】
【分析】
根据边心距求得外接圆的半径为2,根据圆锥的底面圆周长等于扇形的弧长,计算圆锥的半径即可.
【详解】
如图,过点O作OG⊥AF,垂足为G,
∵正六边形的边心距为,
∴∠AOG=30°,OG=,
∴OA=2AG,
∴,
解得GA=1,
∴OA=2,
设圆锥的半径为r,根据题意,得2πr=,
解得r=,
故选C.
【点睛】
本题考查了扇形的弧长公式,圆锥的侧面积,熟练掌握弧长公式,圆锥的侧面积公式是解题的关键.
6、A
【解析】
【分析】
连接,根据同弧所对的圆周角相等可得,根据圆周角定理可得,根据切线的性质以及直角三角形的两锐角互余即可求得的度数.
【详解】
解:如图,连接
,
是的切线
故选A
【点睛】
本题考查了切线的性质,圆周角定理,求得的度数是解题的关键.
7、D
【解析】
【分析】
作OD⊥AC于D,OE⊥BC于E,如图,设⊙O的半径为r,根据切线的性质得OD=OE=r,易得四边形ODCE为正方形,则CD=OD=r,再证明△ADO∽△ACB,然后利用相似比得到,再根据比例的性质求出r即可.
【详解】
解:作OD⊥AC于D,OE⊥BC于E,如图,设⊙O的半径为r,
∵⊙O与AC、BC都相切,
∴OD=OE=r,
而∠C=90°,
∴四边形ODCE为正方形,
∴CD=OD=r,
∵OD∥BC,
∴△ADO∽△ACB,
∴
∵AF=AC-r,BC=3,AC=4,
代入可得,
∴r=.
故选:D.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了相似三角形的判定与性质.
8、C
【解析】
【分析】
由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根据切线长定理得到AG=AH,∠GAF=∠HAF,进而求出∠GAF=∠HAF=∠DAE=30°,据此对A作出判断;接下来延长EF与AB交于点N,得到EF是⊙O的切线,ANE是等边三角形,证明四边形EFGH是平行四边形,再结合HE=EF可对B作出判断;在RtEFC中,∠C=90°,∠FEC=60°,则EF=2CE,再结合AD=DE对C作出判断;由AG=AH,∠GAF=∠HAF,得出GH⊥AO,不难判断D.
【详解】
解:由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.
∵AB和AE都是⊙O的切线,点G、H分别是切点,
∴AG=AH,∠GAF=∠HAF,
∴∠GAF=∠HAF=∠DAE=30°,
∴∠BAE=2∠DAE,故A正确,不符合题意;
延长EF与AB交于点N,如图:
∵OF⊥EF,OF是⊙O的半径,
∴EF是⊙O的切线,
∴HE=EF,NF=NG,
∴△ANE是等边三角形,
∴FG//HE,FG=HE,∠AEF=60°,
∴四边形EFGH是平行四边形,∠FEC=60°,
又∵HE=EF,
∴四边形EFGH是菱形,故B正确,不符合题意;
∵AG=AH,∠GAF=∠HAF,
∴GH⊥AO,故D正确,不符合题意;
在Rt△EFC中,∠C=90°,∠FEC=60°,
∴∠EFC=30°,
∴EF=2CE,
∴DE=2CE.
∵在Rt△ADE中,∠AED=60°,
∴AD=DE,
∴AD=2CE,故C错误,符合题意.
故选C.
【点睛】
本题是一道几何综合题,考查了切线长定理及推论,切线的判定,菱形的定义,含30的直角三角形的性质,等边三角形的判定和性质,翻折变换等,正确理解翻折变换及添加辅助线是解决本题的关键.
9、A
【解析】
【分析】
根据点与圆的位置关系得出OP>3即可.
【详解】
解:∵⊙O的半径为3,点P在⊙O外,
∴OP>3,
故选:A.
【点睛】
本题考查点与圆的位置关系,解答的关键是熟知点与圆的位置关系:设平面内的点与圆心的距离为d,圆的半径为r,则点在圆外d>r,点在圆上d=r,点在圆内d<r.
10、B
【解析】
【分析】
根据确定圆的条件、三角形的内切圆、圆心角化和弧的关系、中心对称图形的概念判断.
【详解】
解:A、不在同一直线上的三点确定一个圆,故错误;
B、任何三角形有且只有一个内切圆,正确;
C、在同圆或等圆中,相等的圆心角所对的弧相等,故错误;
D、边数是偶数的正多边形一定是中心对称图形,故错误;
故选:B.
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
二、填空题
1、外
【解析】
【分析】
直接根据点与圆的位置关系的判定方法进行判断.
【详解】
解:∵⊙O的半径是5,点A到圆心O的距离是7,
即点A到圆心O的距离大于圆的半径,
∴点A在⊙O外.
故答案为:外.
【点睛】
本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.
2、4
【解析】
【分析】
连接OB,利用切线性质,判定三角形POB是直角三角形,利用直角三角形的性质,确定PO的长度即可.
【详解】
如图,连接OB,
∵PB与⊙O相切于点B,
∴∠PBO=90°,
∵∠P=30°,OB=2,
∴PO=4,
故答案为:4.
【点睛】
本题考查了切线性质,直角三角形的性质,熟练掌握切线的性质是解题的关键.
3、##
【解析】
【分析】
在Rt△ABC中,利用正弦函数求得AB的长,再在Rt△AOD中,利用正弦函数得到关于r的方程,求解即可.
【详解】
解:在Rt△ABC中,BC=4,sinA=,
∴=,即=,
∴AB=5,
连接OD,
∵AC是⊙O的切线,
∴OD⊥AC,
设⊙O的半径为r,则OD= OB=r,
∴AO=5- r,
在Rt△AOD中,sinA=,
∴=,即=,
∴r=.
经检验r=是方程的解,
∴⊙O的半径长为.
故答案为:.
【点睛】
本题考查了切线的性质,正弦函数,解题的关键是掌握切线的性质、解直角三角形等知识点.
4、
【解析】
【分析】
根据圆内接正五边形的定义求出∠COD,利用三角形内角和求出答案.
【详解】
解:∵五边形是⊙的内接正五边形,
∴∠COD=,
∵OC=OD,
∴=,
故答案为:.
【点睛】
此题考查了圆内接正五边形的性质,三角形内角和定理,同圆的半径相等的性质,熟记圆内接正五边形的性质是解题的关键.
5、60
【解析】
【分析】
先根据圆的切线的性质可得,从而可得,再根据切线长定理可得,然后根据等边三角形的判定与性质即可得.
【详解】
解:是的切线,
,
,
,
,
是等边三角形,
,
故答案为:60.
【点睛】
本题考查了圆的切线的性质、切线长定理等知识点,熟练掌握圆的切线的性质是解题关键.
三、解答题
1、 (1)见解析
(2)
【解析】
【分析】
(1)根据切线的判定方法,证出即可;
(2)由勾股定理得,,,在中,根据,结合锐角三角函数求出角,再利用扇形的面积的公式求解即可.
(1)
解:如图,连接OB,
∵AB是的切线,
∴,即,
∵BC是弦,,
∴,
∴,在和中,,
∴,
∴,即,
∴AC是的切线;
(2)
解:在中,
由勾股定理得,,,
在中,,
∴,
∴,
∴,
∴.
【点睛】
本题考查切线的判定和性质,三角形全等的判定及性质、勾股定理、锐角三角函数、扇形的面积公式,解题的关键是掌握切线的判定方法,锐角三角函数的知识求解.
2、 (1)见解析
(2)
【解析】
【分析】
(1)要证明DE是⊙O的切线,所以连接OD,只要求出∠ODE=90°即可解答;
(2)连接BD,利用Rt△ADB的面积加上弓形面积即可求出阴影部分的面积.
(1)
证明:连接OD,
∵,
∴∠CAD=∠BAD,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠CAD=∠ODA,
∴AE∥OD,
∴∠E+∠ODE=90°,
∵DE⊥AC,
∴∠E=90°,
∴∠ODE=180°﹣∠E=90°,
∵OD是圆O的半径,
∴DE是⊙O的切线;
(2)
连接BD,
∵AB是⊙O的直径,
∴∠ADB=90°,
∵∠ADE=60°,∠E=90°,
∴∠CAD=90°﹣∠ADE=30°,
∴∠DAB=∠CAD=30°,
∴AB=2BD,
∵,
∴
∴BD=2,BA=4,
∴OD=OB=2,
∴△ODB是等边三角形,
∴∠DOB=60°,
∴△ADB的面积=AD•DB
=×2×2
=2,
∵OA=OB,
∴△DOB的面积=△ADB的面积=,
∴阴影部分的面积为:
△ADB的面积+扇形DOB的面积﹣△DOB的面积
=2﹣
=,
∴阴影部分的面积为:.
【点睛】
本题考查了切线的判定与性质,圆周角定理,扇形的面积公式,勾股定理,含30°角的直角三角形,根据题目的已知条件并结合图形,添加适当的辅助线是解题的关键.
3、 (1)相切,理由见解析
(2)
【解析】
【分析】
(1)连接OD,根据角平分线的性质与角的等量代换易得∠ODE=90°,而D是圆上的一点;故可得直线DE与⊙O相切;
(2)连接BD,根据勾股定理得到AD==2,根据圆周角定理得到∠ADB=90°,根据相似三角形的性质列方程得到AB=5,即可求解.
(1)
解:所在直线与相切.
理由:连接.
∵,
∴.
∵平分,
∴.
∴.
∴.
∴.
∵,
∴.
∴.
∴.
∵是半径,
∴所在直线与相切.
(2)
解:连接.
∵是的直径,
∴.
∴.
又∵,
∴.
∴.
∵,,,
∴.
∴.
∴的半径为.
【点睛】
本题考查的是直线与圆的位置关系,相似三角形的判定和性质及勾股定理,正确的作出辅助线是解题的关键.
4、 (1)见解析
(2)
(3)①见解析;②
【解析】
【分析】
(1)根据正方形的性质以及动点的路程相等,证明,根据同角的余角相等,即可证明,即;
(2)当t=0时,点M与点B重合,当时,点随之停止,求得运动轨迹为圆,根据弧长公式进行计算即可;
(3)①根据(2)可得△CME的外接圆的圆心O是斜边CE的中点,继而判断点D、C、M、E在同一个圆()上;②当与AB相切时,与正方形的各边共有5个交点,如图5则有6个交点,所以“当与AB相切时”是临界情况.如图4,当与AB相切(切点为G),连接OG,并延长GO交CD于点H,在Rt△CHO中求得半径,进而勾股定理求得,即可求得当时,与正方形的各边共有6个交点.
(1)
四边形是正方形,
,
又的运动速度都是2cm/s,
即
(2)
∵.
∴点M在以CB为直径的圆上,如图1,当t=0时,点M与点B重合;
如图2,当t=3时,点M为正方形对角线的交点.点M的运动路径为圆,其路径长.
故答案为:
(3)
①如图3.由前面结论可知:
∴△CME的外接圆的圆心O是斜边CE的中点,
则
在Rt△CDE中,,O是CE的中点.
∴,
∴
∴点D、C、M、E在同一个圆()上,
即点D在△CME的外接圆上;.
②.
如图4,当与AB相切时,与正方形的各边共有5个交点,如图5则有6个交点,所以“当与AB相切时”是临界情况.
如图4,当与AB相切(切点为G),连接OG,并延长GO交CD于点H.
∵AB与相切,
∴,
又∵,
∴,
设的半径为R.由题意得:
在Rt△CHO中,,解得
∴
∴,即
∴如图5,当时,与正方形的各边共有6个交点.
【点睛】
本题考查了求弧长,切线的性质,直径所对的圆周角是直角,三角形的外心,正方形的性质,全等三角形的性质与判定,分类讨论是解题的关键.
5、 (1)见解析
(2)cm
【解析】
【分析】
(1)作∠ABC的平分线,交AC于点O,再以点O为圆心、OC为半径作圆;
(2)记⊙O与AB的切点为E,连接OE,则OC=OE,BC=BE,设OC=OE=r,则AO=AC-r,在Rt△AOE中,由AO2=AE2+OE2列出关于r的方程求解即可.
①设AC=3x,AB=5x,用勾股定理表示出BC的长,根据的周长为12cm,列方程求出x,从而可求出三边的长;
②设AC=3x,AB=5x,用勾股定理表示出BC的长,根据,列方程求出x,从而可求出三边的长;
(1)
解:如图,
(2)
解:如图,设与相切于点.连接OE,则OC=OE,BC=BE,设OC=OE=r,则AO=AC-r.
①∵,∴设AC=3x,AB=5x,
∴BC==4x,
∵的周长为12cm,
∴3x+4x+5x=12,
∴x=1,
∴AC=3,AB=5,
∵⊙O 与 AB 、 BC 所在直线相切
∴BE=BC=4,
∴AE=AB-BE=5-4=1,AO=3-r,
在Rt△AOE中,
∵AO2=AE2+OE2,
∴(3-r)2=12+r2,
∴r=;
②∵,∴设AC=3x,AB=5x,
∴BC==4x,
∵,
∴4x=12,
∴x=1,
∴AC=3,AB=5,
∵⊙O 与 AB 、 BC 所在直线相切
∴BE=BC=4,
∴AE=AB-BE=5-4=1,AO=3-r,
在Rt△AOE中,
∵AO2=AE2+OE2,
∴(3-r)2=12+r2,
∴r=;
即⊙O的半径为cm.
【点睛】
本题考查了作图—复杂作图,勾股定理,切线的性质,以及切线长定理,解题的关键是掌握角平分线的尺规作图和性质、切线的性质和切线长定理及勾股定理.
相关试卷
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品巩固练习,共37页。试卷主要包含了在中,,,给出条件,如图,,在平面直角坐标系中,以点等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀练习题,共33页。试卷主要包含了如图,,如图,将的圆周分成五等分等内容,欢迎下载使用。
这是一份初中冀教版第29章 直线与圆的位置关系综合与测试优秀综合训练题,共32页。试卷主要包含了如图,一把宽为2cm的刻度尺等内容,欢迎下载使用。
