开学活动
搜索
    上传资料 赚现金

    2022年最新冀教版九年级数学下册第二十九章直线与圆的位置关系定向测试试题(含答案解析)

    2022年最新冀教版九年级数学下册第二十九章直线与圆的位置关系定向测试试题(含答案解析)第1页
    2022年最新冀教版九年级数学下册第二十九章直线与圆的位置关系定向测试试题(含答案解析)第2页
    2022年最新冀教版九年级数学下册第二十九章直线与圆的位置关系定向测试试题(含答案解析)第3页
    还剩31页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试课时训练

    展开

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试课时训练,共34页。试卷主要包含了如图所示,在的网格中,A等内容,欢迎下载使用。
    九年级数学下册第二十九章直线与圆的位置关系定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、直角三角形的外接圆半径为3,内切圆半径为1,则该直角三角形的周长是(       A.12 B.14 C.16 D.182、下列说法正确的是(       A.三点确定一个圆 B.任何三角形有且只有一个内切圆C.相等的圆心角所对的弧相等 D.正多边形一定是中心对称图形3、如图,BE的直径,点A和点D上的两点,过点A的切线交BE延长线于点C,若,则的度数是(       A.18° B.28° C.36° D.45°4、如图,BD是⊙O的切线,∠BCE=30°,则∠D=(  )A.40° B.50° C.60° D.30°5、如图所示,在的网格中,ABDO均在格点上,则点O是△ABD的(       A.外心 B.重心 C.中心 D.内心6、已知⊙O的半径为3,点P到圆心O的距离为4,则点P与⊙O的位置关系是(  )A.点P在⊙O B.点P在⊙O C.点P在⊙O D.无法确定7、如图,的直径,外一点,过的切线,切点为,连接,点右侧的半圆周上运动(不与重合),则的大小是(       A.19° B.38° C.52° D.76°8、平面内,⊙O的半径为3,若点P在⊙O外,则OP的长可能为(       A.4 B.3 C.2 D.19、如图,PAPB是⊙O的切线,AB是切点,点C为⊙O上一点,若∠ACB=70°,则∠P的度数为(     A.70° B.50° C.20° D.40°10、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是(  )A.1cm B.2cm C.2cm D.4cm第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图AB为⊙O的直径,点PAB延长线上的点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE垂线ACBD,垂足分别为CD,连接AM,则下列结论正确的是______(写所有正确论的号)AM平分∠CAB;②;③若AB=4,∠APE=30°,则的长为;④若AC=3BD,则有tan∠MAP=2、已知⊙A的半径为5,圆心A(4,3),坐标原点O与⊙A的位置关系是______.3、为了落实“双减”政策,朝阳区一些学校在课后服务时段开设了与冬奥会项目冰壶有关的选修课.如图,在冰壶比赛场地的一端画有一些同心圆作为营垒,其中有两个圆的半径分别约为60cm和180 cm,小明掷出一球恰好沿着小圆的切线滑行出界,则该球在大圆内滑行的路径MN的长度为______cm.4、如图,把分成相等的六段弧,依次连接各分点得到正六边形ABCDEF,如果的周长为,那么该正六边形的边长是______. 5、已知正六边形的周长是24,则这个正六边形的半径为_____ .三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,的半径为1.如果将线段绕原点逆时针旋转后的对应线段所在的直线与相切,且切点在线段上,那么线段就是⊙C 的“关联线段”,其中满足题意的最小就是线段的“关联角”.(1)如图1,如果线段的“关联线段”,那么它的“关联角”为______(2)如图2,如果.那么的“关联线段”有______(填序号,可多选).①线段;②线段;③线段(3)如图3,如果,线段的“关联线段”,那么的取值范围是______.(4)如图4,如果点的横坐标为,且存在以为端点,长度为的线段是的“关联线段”,那么的取值范围是______.2、如图,四边形ACBD内接于⊙OAB是⊙O的直径,CD平分∠ACBAB于点E,点PAB延长线上,(1)求证:PC是⊙O的切线;(2)求证:(3)若,△ACD的面积为12,求PB的长.3、如图,中,(1)用直尺和圆规作,使圆心在边上,且所在直线相切(不写作法,保留作图痕迹);(2)在(1)的条件下,再从以下两个条件①“的周长为12cm;②”中选择一个作为条件,并求的半径4、如图,AB是ΘO的直径,弦AD平分∠BAC,过点DDEAC,垂足为E(1)判断DE所在直线与ΘO的位置关系,并说明理由;(2)若AE=4,ED=2,求ΘO的半径.5、如图,的直径,是半径,连接.延长至点,使,过点的延长线于点(1)求证:的切线;(2)若,求半径的长. -参考答案-一、单选题1、B【解析】【分析】IABE,切BCF,切ACD,连接IEIFID,得出正方形CDIF推出CD=CF=1,根据切线长定理得出AD=AE,BE=BF,CF=CD,求出AD+BF=AE+BE=AB=6,即可求出答案.【详解】解:如图,⊙IABE,切BCF,切ACD,连接IEIFID则∠CDI=∠C=∠CFI=90°,ID=IF=1,∴四边形CDIF是正方形,CD=CF=1,由切线长定理得:AD=AE,BE=BF,CF=CD∵直角三角形的外接圆半径为3,内切圆半径为1,AB=6=AE+BE=BF+AD即△ABC的周长是AC+BC+AB=AD+CD+CF+BF+AB=6+1+1+6=14,故选:B.【点睛】本题考查了直角三角形的外接圆与内切圆,正方形的性质和判定,切线的性质,切线长定理等知识点的综合运用.2、B【解析】【分析】根据确定圆的条件、三角形的内切圆、圆心角化和弧的关系、中心对称图形的概念判断.【详解】解:A、不在同一直线上的三点确定一个圆,故错误;B、任何三角形有且只有一个内切圆,正确;C、在同圆或等圆中,相等的圆心角所对的弧相等,故错误;D、边数是偶数的正多边形一定是中心对称图形,故错误;故选:B.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3、A【解析】【分析】连接,根据同弧所对的圆周角相等可得,根据圆周角定理可得,根据切线的性质以及直角三角形的两锐角互余即可求得的度数.【详解】解:如图,连接的切线故选A【点睛】本题考查了切线的性质,圆周角定理,求得的度数是解题的关键.4、D【解析】【分析】连接,根据同弧所对的圆周角相等,等角对等边,三角形的外角性质可得,根据切线的性质可得,根据直角三角形的两个锐角互余即可求得【详解】解:连接 BD是⊙O的切线故选D【点睛】本题考查了切线的性质,等弧所对的圆周角相等,直角三角形的两锐角互余,掌握切线的性质是解题的关键.5、A【解析】【分析】根据网格的特点,勾股定理求得,进而即可判断点O是△ABD的外心【详解】解:∵O是△ABD的外心故选A【点睛】本题考查了三角形的外心的判定,勾股定理与网格,理解三角形的外心的定义是解题的关键.三角形的外心是三边中垂线的交点,且这点到三角形三顶点的距离相等.6、A【解析】【分析】根据点与圆心的距离与半径的大小关系即可确定点P与⊙O的位置关系.【详解】解:∵⊙O的半径分别是3,点P到圆心O的距离为4,dr∴点P与⊙O的位置关系是:点在圆外.故选:A【点睛】本题主要考查了点与圆的位置关系,准确分析判断是解题的关键.7、B【解析】【分析】连接的直径,求解 结合的切线,求解 再利用圆周角定理可得答案.【详解】解:连接 的直径, 的切线, 故选B【点睛】本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.8、A【解析】【分析】根据点与圆的位置关系得出OP>3即可.【详解】解:∵⊙O的半径为3,点P在⊙O外,OP>3,故选:A.【点睛】本题考查点与圆的位置关系,解答的关键是熟知点与圆的位置关系:设平面内的点与圆心的距离为d,圆的半径为r,则点在圆外dr,点在圆上d=r,点在圆内dr9、D【解析】【分析】首先连接OAOB,由PAPB为⊙O的切线,根据切线的性质,即可得∠OAP=∠OBP=90°,又由圆周角定理,可求得∠AOB的度数,继而可求得答案.【详解】解:连接OAOBPAPB为⊙O的切线,∴∠OAP=∠OBP=90°,∵∠ACB=70°,∴∠AOB=2∠P=140°,∴∠P=360°-∠OAP-∠OBP-∠AOB=40°.故选:D【点睛】此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用.10、D【解析】【分析】根据圆内接正六边形的性质可得△AOB是正三角形,由面积公式可求出半径.【详解】解:如图,由圆内接正六边形的性质可得△AOB是正三角形,过 设半径为r,即OA=OB=AB=rOM=OA•sin∠OAB=∵圆O的内接正六边形的面积为(cm2), ∴△AOB的面积为(cm2), 解得r=4, 故选:D.【点睛】本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.二、填空题1、①②④【解析】【分析】连接OM,由切线的性质可得,继而得,再根据平行线的性质以及等边对等角即可求得,由此可判断①;通过证明,根据相似三角形的对应边成比例可判断②;求出,利用弧长公式求得的长可判断③;由,可得,继而可得,进而有,在中,利用勾股定理求出PD的长,可得,由此可判断④.【详解】解:连接OMPE的切线,AM平分,故①正确;AB的直径,,故②正确;的长为,故③错误;又∵又∵,则中,由①可得故④正确,故答案为:①②④.【点睛】本题考查了切线的性质,平行线分线段成比例定理,相似三角形的判定与性质,勾股定理等,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.2、在⊙A【解析】【分析】先根据两点间的距离公式计算出OA,然后根据点与圆的位置关系的判定方法判断点O与⊙A的位置关系.【详解】解:∵点A的坐标为(4,3),OA==5,∵半径为5,OA=r∴点O在⊙A上.故答案为:在⊙A上.【点睛】本题考查了点与圆的位置关系:点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,当点P在圆外dr;当点P在圆上d=r;当点P在圆内dr3、【解析】【分析】如图,设小圆的切线MN与小圆相切于点D,与大圆交于MN,连接ODOM,根据切线的性质定理和垂径定理求解即可.【详解】解:如图,设小圆的切线MN与小圆相切于点D,与大圆交于MN,连接ODOMODMNMD=DNRtODM中,OM=180cm,OD=60cm,cm,cm,即该球在大圆内滑行的路径MN的长度为cm,故答案为:【点睛】本题考查切线的性质定理、垂径定理、勾股定理,熟练掌握切线的性质和垂径定理是解答的关键.4、6【解析】【分析】如图,连接OAOBOCODOEOF,证明△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,再求出圆的半径即可.【详解】解:如图,连接OAOBOCODOEOF∵正六边形ABCDEFABBCCDDEEFFA,∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠FOA=60°,∴△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,的周长为的半径为正六边形的边长是6;【点睛】本题考查正多边形与圆的关系、等边三角形的判定和性质等知识,明确正六边形的边长和半径相等是解题的关键.5、4【解析】【分析】由于正六边形可以由其半径分为六个全等的正三角形,而三角形的边长就是正六边形的半径,由此即可求解.【详解】解:∵正六边形可以由其半径分为六个全等的正三角形,而三角形的边长就是正六边形的半径,又∵正六边形的周长为24,∴正六边形边长为24÷6=4,∴正六边形的半径等于4.故答案为4.【点睛】此题主要考查正多边形和圆,解题的关键是熟练掌握基本知识,属于中考基础题.三、解答题1、 (1)(2)②,③(3)(4)【解析】【分析】(1)作OD相切,此时所得最小,根据切线的性质可得,再由含角的直角三角形的特殊性质可得,再由勾股定理可得OD长度,判断切点在OD上即可得2)根据勾股定理求出各点与原点的距离与最长切线距离比较即可得;3)线段BD绕点O的旋转路线的半径为1的上,当OD相切时,由(1)可得:,根据题意即可确定t的取值范围,得出线段BD的“关联线段”;(4)当m取最大值时,M点运动最小半径是O到过点的直线l的距离m,根据题意可得,得出,即为m的最大值;当m取最小值时,作出相应图形,根据题意可得,再由,及点M所在位置,即可确定m的最小值,综合即可得.(1)解:如图所示:作OD相切, 此时的角度最小,且切点在线段OD上,OA的关联角为(2)解:如图所示:连接切点不在线段上,不是的“关联线段”;的“关联线段”;的“关联线段”;(3)解:,线段BD绕点O的旋转路线的半径为1的上,OD相切时,由(1)可得:时,线段BD的“关联线段”,故答案为:(4)解:如图所示:当m取最大值时,M点运动最小半径是O到过点的直线l的距离是mm的最大值为4如图所示:当m取小值时,开始时存在ME相切,,及点M所在位置,综上可得:故答案为:【点睛】题目主要考查直线与圆的位置关系,线段旋转的性质,勾股定理解三角形等,理解题意,作出相应图象是解题关键.2、 (1)见解析(2)见解析(3)【解析】【分析】(1)连接,根据直径所对的圆周角等于90°可得,根据等边对等角可得,进而证明,即可求得,从而证明PC是⊙O的切线;(2)由(1)可得,进而证明,可得,根据等角对等边证明,即可得证(3)作于点F,勾股定求得,证明,进而求得的长,设,根据△ACD的面积为12,求得,勾股定理求得,由可得,即可求得的长.(1)连接OC,如图,AB的直径,..半径,是⊙O的切线.(2)由(1),得.平分.,即.(3)于点F,如图,平分,由勾股定理得:...解得(舍去).Rt△ACF中,由勾股定理得:由(2)得.【点睛】本题考查了切线的判定,相似三角形的性质与判定,等腰三角形的性质与判定,勾股定理,掌握相似三角形的性质与判定是解题的关键.3、 (1)见解析(2)cm【解析】【分析】(1)作∠ABC的平分线,交AC于点O,再以点O为圆心、OC为半径作圆;(2)记⊙OAB的切点为E,连接OE,则OC=OEBC=BE,设OC=OE=r,则AO=AC-r,在RtAOE中,由AO2=AE2+OE2列出关于r的方程求解即可.①设AC=3xAB=5x,用勾股定理表示出BC的长,根据的周长为12cm,列方程求出x,从而可求出三边的长;②设AC=3xAB=5x,用勾股定理表示出BC的长,根据,列方程求出x,从而可求出三边的长;(1)解:如图,(2)解:如图,设相切于点.连接OE,则OC=OEBC=BE,设OC=OE=r,则AO=AC-r①∵,∴设AC=3xAB=5xBC==4x的周长为12cm∴3x+4x+5x=12,x=1,AC=3,AB=5,∵⊙O 与 ABBC 所在直线相切BE=BC=4,AE=AB-BE=5-4=1,AO=3-rRtAOE中,AO2=AE2+OE2∴(3-r)2=12+r2r=②∵,∴设AC=3xAB=5xBC==4x∴4x=12,x=1,AC=3,AB=5,∵⊙OABBC 所在直线相切∴BE=BC=4,AE=AB-BE=5-4=1,AO=3-rRtAOE中,AO2=AE2+OE2∴(3-r)2=12+r2r=即⊙O的半径cm【点睛】本题考查了作图—复杂作图,勾股定理,切线的性质,以及切线长定理,解题的关键是掌握角平分线的尺规作图和性质、切线的性质和切线长定理及勾股定理.4、 (1)相切,理由见解析(2)【解析】【分析】(1)连接OD,根据角平分线的性质与角的等量代换易得∠ODE=90°,而D是圆上的一点;故可得直线DE与⊙O相切;(2)连接BD,根据勾股定理得到AD=2,根据圆周角定理得到∠ADB=90°,根据相似三角形的性质列方程得到AB=5,即可求解.(1)解:所在直线与相切.理由:连接平分是半径,所在直线与相切.(2)解:连接的直径,又∵的半径为【点睛】本题考查的是直线与圆的位置关系,相似三角形的判定和性质及勾股定理,正确的作出辅助线是解题的关键.5、 (1)证明见解析(2)⊙O半径的长为【解析】【分析】(1)根据角度的数量关系,可得,即,进而可证的切线;(2)由题意知,由可得的值,由,得,在中,,求解即可.(1)证明:∵的直径的切线;(2)解:∵中,,即半径长为【点睛】本题考查了切线的判定,勾股定理,正切值.解题的关键在于对知识的灵活运用. 

    相关试卷

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品课后测评:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品课后测评,共35页。试卷主要包含了已知M等内容,欢迎下载使用。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试一课一练:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试一课一练,共33页。

    2021学年第29章 直线与圆的位置关系综合与测试综合训练题:

    这是一份2021学年第29章 直线与圆的位置关系综合与测试综合训练题,共30页。试卷主要包含了下列四个命题中,真命题是,如图,PA等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map