开学活动
搜索
    上传资料 赚现金

    2022年精品解析冀教版九年级数学下册第二十九章直线与圆的位置关系达标测试试题(无超纲)

    2022年精品解析冀教版九年级数学下册第二十九章直线与圆的位置关系达标测试试题(无超纲)第1页
    2022年精品解析冀教版九年级数学下册第二十九章直线与圆的位置关系达标测试试题(无超纲)第2页
    2022年精品解析冀教版九年级数学下册第二十九章直线与圆的位置关系达标测试试题(无超纲)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试精练

    展开

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精练,共30页。
    九年级数学下册第二十九章直线与圆的位置关系达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、的半径为5 , 若直线与该圆相交, 则圆心到直线的距离可能是 (       A.3 B.5 C.6 D.102、已知M(1,2),N(3,﹣3),Pxy)三点可以确定一个圆,则以下P点坐标不满足要求的是(       A.(3,5) B.(﹣3,5) C.(1,2) D.(1,﹣2)3、的边经过圆心与圆相切于点,若,则的大小等于(       A. B. C. D.4、已知正三角形外接圆半径为,这个正三角形的边长是(       A. B. C. D.5、如图,已知的内接正六边形的边心距,则阴影部分的面积是(       ).A. B. C. D.6、如图,在矩形ABCD中,点ECD边上,连接AE,将沿AE翻折,使点D落在BC边的点F处,连接AF,在AF上取点O,以O为圆心,线段OF的长为半径作⊙O,⊙OABAE分别相切于点GH,连接FGGH.则下列结论错误的是(       A. B.四边形EFGH是菱形C. D.7、在平面直角坐标系xOy中,已知点A(﹣4,﹣3),以点A为圆心,4为半径画⊙A,则坐标原点O与⊙A的位置关系是(  )A.点O在⊙A B.点O在⊙AC.点O在⊙A D.以上都有可能8、如图,⊙O是正五边形ABCDE的外接圆,点P的一点,则∠CPD的度数是(  )A.30° B.36° C.45° D.72°9、如图,正方形ABCD的边长为8,若经过CD两点的⊙O与直线AB相切,则⊙O的半径为(       A.4.8 B.5 C.4 D.410、如图,AB是⊙O的直径,CD是⊙O上两点,ADCD,过点C作⊙O的切线交AB的延长线于点E,若∠E=50°,则∠ACD等于(       A.40° B.50° C.55° D.60°第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,PAPB的切线,切点分别为AB.若,则AB的长为______.2、如图,正五边形ABCDE内接于⊙O,作OFBC交⊙O于点F,连接FA,则∠OFA=_____°.3、如图,在ABC中,∠C=90°,AB=10,在同一平面内,点O到点ABC的距离均等于aa为常数).那么常数a的值等于________.4、已知⊙O的直径为8cm,如果直线AB上的一点与圆心的距离为4cm,则直线AB与⊙O的位置关系是 _____.5、已知正三角形的边心距为,则正三角形的边长为______三、解答题(5小题,每小题10分,共计50分)1、如图,的切线,点在上,相交于的直径,连接,若(1)求证:平分(2)当时,求的半径长.2、如图,已知的直径,点上,点外.(1)动手操作:作的角平分线,与圆交于点(要求:尺规作图,不写作法,保留作图痕迹)(2)综合运用,在你所作的图中.若,求证:的切线.3、如图,中,(1)用直尺和圆规作,使圆心在边上,且所在直线相切(不写作法,保留作图痕迹);(2)在(1)的条件下,再从以下两个条件①“的周长为12cm;②”中选择一个作为条件,并求的半径4、如图,在中,平分于点D,点O上,以点O为圆心,为半径的圆恰好经过点D,分别交于点EF(1)试判断直线的位置关系,并说明理由;(2)若,求阴影部分的面积(结果保留).5、如图,的直径,是半径,连接.延长至点,使,过点的延长线于点(1)求证:的切线;(2)若,求半径的长. -参考答案-一、单选题1、A【解析】【分析】根据直线l和⊙O相交dr,即可判断.【详解】解:∵⊙O的半径为5,直线l与⊙O相交,∴圆心D到直线l的距离d的取值范围是0≤d<5,故选:A.【点睛】本题考查直线与圆的位置关系,解题的关键是记住①直线l和⊙O相交dr②直线l和⊙O相切d=r③直线l和⊙O相离dr2、C【解析】【分析】先利用待定系数法求出直线的解析式,再把每点代入函数解析式,根据不在同一直线上的三点能确定一个圆即可得出答案.【详解】解:设直线的解析式为将点代入得:,解得则直线的解析式为A、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;B、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;C、当时,,则此时点在同一直线上,不可以确定一个圆,此项符合题意;D、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;故选:C.【点睛】本题考查了确定一个圆、求一次函数的解析式,熟练掌握确定一个圆的条件是解题关键.3、A【解析】【分析】连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.【详解】解:连接 与圆相切于点故选:A.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.4、B【解析】【分析】如图, 为正三角形ABC的外接圆,过点OODAB于点D,连接OA, 再由等边三角形的性质,可得∠OAB=30°,,然后根据锐角三角函数,即可求解.【详解】解:如图, 为正三角形ABC的外接圆,过点OODAB于点D,连接OA根据题意得:OA= ,∠OAB=30°,中,AB=3,即这个正三角形的边长是3.故选:B【点睛】本题主要考查了锐角三角函数,三角形的外接圆,熟练掌握锐角三角函数,三角形的外接圆性质是解题的关键.5、D【解析】【分析】连接正六边形的相邻的两个顶点与圆心,构造扇形和等边三角形,则可得到弓形的面积,阴影部分的面积等于弓形的6倍.【详解】解:连接的内接正六边形∴△DOE是等边三角形,∴∠DOM=30°,,则解得:根据图可得:故选:D.【点睛】本题考查了正多边形与圆及扇形的面积的计算,解题的关键是知道阴影部分的面积等于三个弓形的面积.6、C【解析】【分析】由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根据切线长定理得到AG=AH,∠GAF=∠HAF,进而求出∠GAF=∠HAF=∠DAE=30°,据此对A作出判断;接下来延长EFAB交于点N,得到EF是⊙O的切线,ANE是等边三角形,证明四边形EFGH是平行四边形,再结合HE=EF可对B作出判断;在RtEFC中,∠C=90°,∠FEC=60°,则EF=2CE,再结合AD=DEC作出判断;由AG=AH,∠GAF=∠HAF,得出GHAO,不难判断D【详解】解:由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.ABAE都是⊙O的切线,点GH分别是切点,AG=AH,∠GAF=∠HAF∴∠GAF=∠HAF=∠DAE=30°,∴∠BAE=2∠DAE,故A正确,不符合题意;延长EFAB交于点N,如图:OFEFOF是⊙O的半径,EF是⊙O的切线,HE=EFNF=NG∴△ANE是等边三角形,FG//HEFG=HE,∠AEF=60°,∴四边形EFGH是平行四边形,∠FEC=60°,又∵HE=EF∴四边形EFGH是菱形,故B正确,不符合题意;AG=AH,∠GAF=∠HAFGHAO,故D正确,不符合题意;RtEFC中,∠C=90°,∠FEC=60°,∴∠EFC=30°,EF=2CEDE=2CE.∵在RtADE中,∠AED=60°,AD=DEAD=2CE,故C错误,符合题意.故选C.【点睛】本题是一道几何综合题,考查了切线长定理及推论,切线的判定,菱形的定义,含30的直角三角形的性质,等边三角形的判定和性质,翻折变换等,正确理解翻折变换及添加辅助线是解决本题的关键.7、B【解析】【分析】本题可先由勾股定理等性质算出点与圆心的距离d,再根据点与圆心的距离与半径的大小关系,即当dr时,点在圆外;当d=r时,点在圆上;点在圆外;当dr时,点在圆内;来确定点与圆的位置关系.【详解】解:∵点A(﹣4,﹣3),∵⊙A的半径为4,∴点O在⊙A外;故选:B【点睛】本题考查了点与圆的位置关系及坐标与图形性质,能够根据勾股定理求得点到圆心的距离,根据数量关系判断点和圆的位置关系.8、B【解析】【分析】连接OCOD.求出∠COD的度数,再根据圆周角定理即可解决问题;【详解】解:如图,连接OCOD∵五边形ABCDE是正五边形,∴∠COD=72°,∴∠CPDCOD=36°,故选:B【点睛】本题主要考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9、B【解析】【分析】连接EO,延长EOCDF,连接DO,设半径为x.构建方程即可解决问题.【详解】解:设⊙OAB相切于点E.连接EO,延长EOCDF,连接DO再设⊙O的半径为xAB切⊙OEEFABABCDEFCD∴∠OFD=90°,RtDOF中,∵∠OFD=90°,OF2+DF2=OD2∴(8-x2+42= x2x=5,∴⊙O的半径为5.故选:B.【点睛】本题考查了切线的性质、正方形的性质、垂径定理、勾股定理等知识,解题的关键是灵活运用这些知识解决问题,学会添加常用辅助线,构造直角三角形解决问题.10、C【解析】【分析】连接OC,根据切线的性质可得,利用三角形内角和定理可得,根据邻补角得,再由同弧所对的圆周角是圆心角的一半得出,利用等边对等角及三角形内角和定理即可得出结果.【详解】解:连接OC,如图所示:CE相切,故选:C.【点睛】题目主要考查直线与圆的位置关系,三角形内角和定理,圆周角定理、等边对等角求角度等,理解题意,作出辅助线,综合运用这些知识点是解题关键.二、填空题1、3【解析】【分析】由切线长定理和,可得为等边三角形,则【详解】解:连接,如下图:分别为的切线,为等腰三角形,为等边三角形,故答案为:3.【点睛】本题考查了等边三角形的判定和切线长定理,解题的关键是作出相应辅助线.2、36【解析】【分析】连接OAOBOBAFJ.由正多边形中心角、垂径定理、圆周角定理得出∠AOB=72°,∠BOF=36°,再由等腰三角形的性质得出答案.【详解】解:连接OAOBOBAFJ∵五边形ABCDE是正五边形,OFBC∴∠AOB72°,∠BOF=AOB=36°,∴∠AOF=∠AOB +∠BOF=108°,OAOF∴∠OAF=∠OFA=36°故答案为:36.【点睛】本题主要考查了园内正多边形中心角度数、垂径定理和圆周角定理,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧,垂径定理常与勾股定理以及圆周角定理相结合来解题.正n边形的每个中心角都等于3、5【解析】【分析】直接利用直角三角形斜边上的中线等于斜边的一半即可求解.【详解】解:根据直角三角形斜边上的中线等于斜边的一半,即可知道点到点ABC的距离相等,如下图:故答案是:5.【点睛】本题考查了直角三角形的外接圆的外心,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半即可求解.4、相切或相交【解析】【分析】本题需分类讨论,当直线上的点到圆心的连线垂直于直线AB时,直线于圆的位置关系为相切,当直线上的点到圆心的连线与直线AB不垂直时,直线到圆心的距离小于圆的半径,直线与圆相交.【详解】设直线AB上与圆心距离为4cm的点为COCAB时,OC=⊙O的半径,所以直线AB与⊙O相切,OCAB不垂直时,圆心O到直线AB的距离小于OC所以圆心O到直线AB的距离小于⊙O的半径,所以直线AB与⊙O相交,综上所述直线AB与⊙O的位置关系为相切或相交,故答案为:相切或相交.【点睛】本题考查直线与圆的位置关系,本题需根据圆心与直线上一点的距离,分类讨论圆与直线的位置关系,利用分类讨论思想是解决本题的关键.5、6【解析】【分析】直接利用正三角形的性质得出BO=2DO=2,再由勾股定理求出BD的长即可解决问题.【详解】解:如图所示:连接BO由题意可得,ODBCOD=,∠OBD=30°,BO=2DO=2BC=2BD由勾股定理得, 故答案为:6.【点睛】此题主要考查了正多边形和圆,正确掌握正三角形的性质是解题关键.三、解答题1、 (1)见解析(2)的半径长为【解析】【分析】(1)根据切线的性质,可得,由平行线的性质,等边对等角,等量代换即可得,进而得证;(2)连接,根据直径所对的圆周角是直角,勾股定理求得,证明列出比例式,代入数值求解可得,进而求得半径(1)证明:如图,连接的切线,,即平分(2)解:如图,连接中,由勾股定理得:的直径,,即解得:的半径长为【点睛】本题考查了切线的性质,直径所对的圆周角是直角,相似三角形的性质与判定,勾股定理,掌握圆的相关知识以及相似三角形的是解题的关键.2、 (1)作图见解析(2)证明见解析【解析】【分析】(1)如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN于点D即可.(2)连接ADAB为直径,进而可得AE的切线.(1)解:如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN于点D(2)解:连接AD,如图为直径又∵AB为直径AE的切线.【点睛】本题考查了角平分线的画法,圆周角,切线的判定等知识.解题的关键在于对知识的灵活熟练的运用.3、 (1)见解析(2)cm【解析】【分析】(1)作∠ABC的平分线,交AC于点O,再以点O为圆心、OC为半径作圆;(2)记⊙OAB的切点为E,连接OE,则OC=OEBC=BE,设OC=OE=r,则AO=AC-r,在RtAOE中,由AO2=AE2+OE2列出关于r的方程求解即可.①设AC=3xAB=5x,用勾股定理表示出BC的长,根据的周长为12cm,列方程求出x,从而可求出三边的长;②设AC=3xAB=5x,用勾股定理表示出BC的长,根据,列方程求出x,从而可求出三边的长;(1)解:如图,(2)解:如图,设相切于点.连接OE,则OC=OEBC=BE,设OC=OE=r,则AO=AC-r①∵,∴设AC=3xAB=5xBC==4x的周长为12cm∴3x+4x+5x=12,x=1,AC=3,AB=5,∵⊙O 与 ABBC 所在直线相切BE=BC=4,AE=AB-BE=5-4=1,AO=3-rRtAOE中,AO2=AE2+OE2∴(3-r)2=12+r2r=②∵,∴设AC=3xAB=5xBC==4x∴4x=12,x=1,AC=3,AB=5,∵⊙OABBC 所在直线相切∴BE=BC=4,AE=AB-BE=5-4=1,AO=3-rRtAOE中,AO2=AE2+OE2∴(3-r)2=12+r2r=即⊙O的半径cm【点睛】本题考查了作图—复杂作图,勾股定理,切线的性质,以及切线长定理,解题的关键是掌握角平分线的尺规作图和性质、切线的性质和切线长定理及勾股定理.4、 (1)BC与⊙O相切,理由见详解(2)【解析】【分析】(1)根据题意先证明ODAC,即可证得∠ODB=90°,从而证得BC是圆的切线;(2)由题意直接根据三角形和扇形的面积公式进行计算即可得到结论.(1)解: BC与⊙O相切.证明:∵AD是∠BAC的平分线,∴∠BAD=∠CAD又∵OD=OA∴∠OAD=∠ODA∴∠CAD=∠ODAODAC∴∠ODB=∠C=90°,即ODBC又∵BC过半径OD的外端点DBC与⊙O相切;(2),∠ODB=90°,RtOBD中, 由勾股定理得:SOBD= ODBD= S扇形ODF= ∴阴影部分的面积=【点睛】本题考查切线的判定和扇形面积以及勾股定理,熟练掌握切线的判定是解答本题的关键.5、 (1)证明见解析(2)⊙O半径的长为【解析】【分析】(1)根据角度的数量关系,可得,即,进而可证的切线;(2)由题意知,由可得的值,由,得,在中,,求解即可.(1)证明:∵的直径的切线;(2)解:∵中,,即半径长为【点睛】本题考查了切线的判定,勾股定理,正切值.解题的关键在于对知识的灵活运用. 

    相关试卷

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品巩固练习:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品巩固练习,共37页。试卷主要包含了在中,,,给出条件,如图,,在平面直角坐标系中,以点等内容,欢迎下载使用。

    初中冀教版第29章 直线与圆的位置关系综合与测试优秀综合训练题:

    这是一份初中冀教版第29章 直线与圆的位置关系综合与测试优秀综合训练题,共28页。试卷主要包含了下面四个结论正确的是,下列四个命题中,真命题是等内容,欢迎下载使用。

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品当堂检测题:

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品当堂检测题,共34页。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map