


初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试测试题
展开
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试测试题,共37页。试卷主要包含了如图,一把宽为2cm的刻度尺,下面四个结论正确的是等内容,欢迎下载使用。
九年级数学下册第二十九章直线与圆的位置关系专题训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,已知AB是的直径,C是AB延长线上一点,CE是的切线,切点为D,过点A作于点E,交于点F,连接OD、AD、BF.则下列结论不一定正确的是( )
A. B.AD平分 C. D.
2、如图,BD是⊙O的切线,∠BCE=30°,则∠D=( )
A.40° B.50° C.60° D.30°
3、如图,将的圆周分成五等分(分点为A、B、C、D、E),依次隔一个分点相连,即成一个正五角星形.小张在制图过程中,惊讶于图形的奇妙,于是对图形展开了研究,得到:点M是线段AD、BE的黄金分割点,也是线段NE、AH的黄金分割点.在以下结论中,不正确的是( )
A. B.
C. D.
4、如图,一把宽为2cm的刻度尺(单位:cm),放在一个圆形茶杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和10,茶杯的杯口外沿半径为( )
A.10cm B.8cm C.6cm D.5cm
5、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是( )
A.1cm B.2cm C.2cm D.4cm
6、已知正五边形的边长为1,则该正五边形的对角线长度为( ).
A. B. C. D.
7、下面四个结论正确的是( )
A.度数相等的弧是等弧 B.三点确定一个圆
C.在同圆或等圆中,圆心角是圆周角的2倍 D.三角形的外心到三角形的三个顶点的距离相等
8、如图,与的两边分别相切,其中OA边与⊙C相切于点P.若,,则OC的长为( )
A.8 B. C. D.
9、如图,AB是⊙O的直径,点D在⊙O上,连接OD、BD,过点D作⊙O的切线交BA延长线于点C,若∠C=40°,则∠B的度数为( )
A.15° B.20° C.25° D.30°
10、如图,⊙O是正五边形ABCDE的外接圆,点P是的一点,则∠CPD的度数是( )
A.30° B.36° C.45° D.72°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,已知正方形ABCD的边长为4,点E在BC上,DE为以AB为直径的半圆的切线,切点为F,连结CF,则ED的长为______,CF的长为______.
2、 “化圆为方”是古希腊尺规作图难题之一,即:求作一个正方形,使其面积等于给定圆的面积.这个问题困扰了人类上千年,直到19世纪,该问题被证明仅用直尺和圆规是无法完成的.如果借用一个圆形纸片,我们就可以化圆为方,方法如下:
已知:⊙O(纸片),其半径为.
求作:一个正方形,使其面积等于⊙O的面积.
作法:①如图1,取⊙O的直径,作射线,过点作的垂线;
②如图2,以点为圆心,为半径画弧交直线于点;
③将纸片⊙O沿着直线向右无滑动地滚动半周,使点,分别落在对应的,处;
④取的中点,以点为圆心,为半径画半圆,交射线于点;
⑤以为边作正方形.
正方形即为所求.
根据上述作图步骤,完成下列填空:
(1)由①可知,直线为⊙O的切线,其依据是________________________________.
(2)由②③可知,,,则_____________,____________(用含的代数式表示).
(3)连接,在Rt中,根据,可计算得_________(用含的代数式表示).由此可得.
3、如图,在△ABC中,∠ACB=90°,CD=2,以CD为直径的⊙与AB相切于点E.若弧DE的长为为π,则阴影部分的面积为 _____.(保留π)
4、如图,直线AB与x轴、y轴分别相交于A、B两点,点A(-3,0),点 B(0,),圆心P的坐标为(1,0),圆P与y轴相切与点O.若将圆P沿x轴向左移动,当圆P与该直线相交时,令圆心P的横坐标为m,则m的取值范围是________.
5、一个正多边形的中心角是,则这个正多边形的边数为________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,是的切线,点在上,与相交于,是的直径,连接,若.
(1)求证:平分;
(2)当,时,求的半径长.
2、如图,在中,,平分,与交于点,,垂足为,与交于点,经过,,三点的与交于点.
(1)求证是的切线;
(2)若,,求的半径.
3、如图,四边形ACBD内接于⊙O,AB是⊙O的直径,CD平分∠ACB交AB于点E,点P在AB延长线上,.
(1)求证:PC是⊙O的切线;
(2)求证:;
(3)若,△ACD的面积为12,求PB的长.
4、如图,是的直径,是圆上两点,且有,连结,作的延长线于点.
(1)求证:是的切线;
(2)若,求阴影部分的面积.(结果保留)
5、如图,在中,,⊙O是的外接圆,过点C作,交⊙O于点D,连接AD交BC于点E,延长DC至点F,使,连接AF.
(1)求证:;
(2)求证:AF是⊙O的切线.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据直径所对的圆周角是直角,切线的性质即可判断A选项;根据,,进而即可判断B选项;设交于点,证明四边形是矩形,由垂径定理可得,进而可得进而判断C选项;无法判断D选项.
【详解】
解:∵AB是的直径,
∴
∵CE是的切线,切点为D,
∴
,故A选项正确,
,
即AD平分,故B选项正确,
设交于点,如图,
∵,
∴四边形是矩形
,
,故C选项正确
若,则
由于点不一定是的中点,故D选项不正确;
故选D
【点睛】
本题考查了直径所对的圆周角是直角,垂径定理,切线的性质,矩形的判定,掌握圆的相关知识是解题的关键.
2、D
【解析】
【分析】
连接,根据同弧所对的圆周角相等,等角对等边,三角形的外角性质可得,根据切线的性质可得,根据直角三角形的两个锐角互余即可求得.
【详解】
解:连接
BD是⊙O的切线
故选D
【点睛】
本题考查了切线的性质,等弧所对的圆周角相等,直角三角形的两锐角互余,掌握切线的性质是解题的关键.
3、C
【解析】
【分析】
利用正五边形的性质,圆的性质,相似三角形的判定和性质,黄金分割定理判断即可.
【详解】
如图,连接AB,BC,CD,DE,EA,
∵点M是线段AD、BE的黄金分割点,也是线段NE、AH的黄金分割点,
∴,
∵AB=BC=CD=DE=EA,
∴∠DAE=∠AEB,
∴AM=ME,
∴,
∴A正确,不符合题意;
∵点M是线段AD、BE的黄金分割点,也是线段NE、AH的黄金分割点,
∴点F是线段BD的黄金分割点,
∴,
∵AB=BC=CD=DE=EA,∠BCD=∠AED,
∴△BCD≌△AED,
∴AD=BD,
∴,
∴B正确,不符合题意;
∵AB=BC=CD=DE=EA, ∠BAE=108°,
∴∠BAC=∠CAD=∠DAE,
∴∠CAD=36°,
∴D正确,不符合题意;
∵∠CAD=36°, AN=BN=AM=ME,
∴∠ANM=∠AMN=72°,
∴AM>MN,
∴C错误,符合题意;
故选C.
【点睛】
本题考查了圆的性质,正五边形的性质,三角形的全等,黄金分割,熟练掌握圆的性质,正五边形的性质,黄金分割的意义是解题的关键.
4、D
【解析】
【分析】
作OD⊥AB于C,OC的延长线交圆于D,其中点为圆心,为半径,cm,cm;设茶杯的杯口外沿半径为,在中,由勾股定理知,进而得出结果.
【详解】
解:作OD⊥AB于C,OC的延长线交圆于D,其中点为圆心,为半径,
由题意可知cm,cm;
∵
∴AC=BC=4cm,
设茶杯的杯口外沿半径为
则在中,由勾股定理知
解得
故选D.
【点睛】
本题考查了垂径定理,切线的性质,勾股定理的应用.解题的关键在于将已知线段长度转化到一个直角三角形中求解计算.
5、D
【解析】
【分析】
根据圆内接正六边形的性质可得△AOB是正三角形,由面积公式可求出半径.
【详解】
解:如图,由圆内接正六边形的性质可得△AOB是正三角形,过作于
设半径为r,即OA=OB=AB=r,
OM=OA•sin∠OAB=,
∵圆O的内接正六边形的面积为(cm2),
∴△AOB的面积为(cm2),
即,
,
解得r=4,
故选:D.
【点睛】
本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.
6、C
【解析】
【分析】
如图,五边形ABCDE为正五边形, 证明 再证明可得:设AF=x,则AC=1+x,再解方程即可.
【详解】
解:如图,五边形ABCDE为正五边形,
∴五边形的每个内角均为108°,
∴∠BAG=∠ABF=∠ACB=∠CBD= 36°,
∴∠BGF=∠BFG=72°,
设AF=x,则AC=1+x,
解得:,
经检验:不符合题意,舍去,
故选C
【点睛】
本题考查的是正多边形的性质,等腰三角形的判定与性质,相似三角形的判定与性质,证明是解本题的关键.
7、D
【解析】
【分析】
根据圆的有关概念、确定圆的条件、圆周角定理及三角形的外心的性质解得即可.
【详解】
解:A、在同圆或等圆中,能完全重合的弧才是等弧,故错误;
B、不在同一直线上的三点确定一个圆,故错误;
C、在同圆或等圆中,同弧或等弧所对的圆心角是圆周角的2倍,故错误;
D、三角形的外心到三角形的三个顶点的距离相等,故正确;
故选D.
【点睛】
本题考查了圆的有关的概念,属于基础知识,必须掌握.
8、C
【解析】
【分析】
如图所示,连接CP,由切线的性质和切线长定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根据勾股定理求解即可.
【详解】
解:如图所示,连接CP,
∵OA,OB都是圆C的切线,∠AOB=90°,P为切点,
∴∠CPO=90°,∠COP=45°,
∴∠PCO=∠COP=45°,
∴CP=OP=4,
∴,
故选C.
【点睛】
本题主要考查了切线的性质,切线长定理,等腰直角三角形的性质与判定,勾股定理,熟知切线长定理是解题的关键.
9、C
【解析】
【分析】
根据切线的性质得到∠CDO=90°,求得∠COD=90°-40°=50°,根据等腰三角形的性质和三角形外角的性质即可得到结论.
【详解】
解:∵CD是⊙O的切线,
∴∠CDO=90°,
∵∠C=40°,
∴∠COD=90°-40°=50°,
∵OD=OB,
∴∠B=∠ODB,
∵∠COD=∠B+∠ODB,
∴∠B=∠COD=25°,
故选:C.
【点睛】
本题考查了切线的性质,圆周角定理,三角形外角的性质,等腰三角形的性质,熟练掌握切线的性质是解题的关键.
10、B
【解析】
【分析】
连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题;
【详解】
解:如图,连接OC,OD.
∵五边形ABCDE是正五边形,
∴∠COD==72°,
∴∠CPD=∠COD=36°,
故选:B
【点睛】
本题主要考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
二、填空题
1、 5
【解析】
【分析】
先证明BE、AD也是半圆的切线,即可根据切线长定理得到EB=EF、DA=DF,再在△DCE中即可求出DE的值;过F作FG⊥DC于G,根据相似求出FG、CG的长,最后根据勾股定理即可求出CF的值.
【详解】
∵正方形ABCD
∴CD=AD=BC=4,CE⊥AB,DA⊥AB
∵以AB为直径的半圆
∴BE、AD也是半圆的切线
∵DE为以AB为直径的半圆的切线,
∴EB=EF、DA=DF=4
∴EC=BC-BE=4-EF,DE=DF+EF=4+EF
在Rt△DCE中,
∴
解得
∴DE=DF+EF=4+EF=5
过F作FG⊥DC于G,如图
∴
∴
∴
解得
∴
∴在Rt△DCE中,
故答案为:5,
【点睛】
本题考查切割线定理、相似三角形的性质与判定,解题的关键是能看出有多条切线.
2、(1)经过半径外端且垂直于这条半径的直线是圆的切线;(2),;(3)
【解析】
【分析】
(1)根据切线的定义判断即可.
(2)由=AC+,计算即可;根据计算即可.
(3)根据勾股定理,得即为正方形的面积,比较与圆的面积的大小关机即可.
【详解】
解:(1)∵⊙O的直径,作射线,过点作的垂线,
∴经过半径外端且垂直于这条半径的直线是圆的切线;
故答案为:经过半径外端且垂直于这条半径的直线是圆的切线;
(2)根据题意,得AC=r,==πr,
∴=AC+=r+πr,
∴=;
∵,
∴MA=-r=,
故答案为:,;
(3)如图,连接ME,
根据勾股定理,得
=
=;
故答案为:.
【点睛】
本题考查了圆的切线的定义,勾股定理,圆的周长,正方形的面积和性质,熟练掌握圆的切线的定义,勾股定理,正方形的性质是解题的关键.
3、
【解析】
【分析】
连接OE,首先由弧长公式求得∠EOD=60°;然后利用△BEO的性质得到线段OB的长度,易得AC与BC的长度;最后根据S阴影=S△ABC﹣S扇形OCE﹣S△OBE解答.
【详解】
解:如图,连接OE,
∵以CD为直径的⊙与AB相切于点E,
∴OE⊥BE.
设∠EOD=n°,
∵OD= CD=1,弧DE的长为π,
∴=π.
∴∠EOD=60°.
∴∠B=30°,∠COE=120°.
∴OB=2OE=2,BE=,AB=2AC,
∵AC=AE,
∴AC=BE=.
∴S阴影=S△ABC﹣S扇形OCE﹣S△OBE
=××3﹣﹣×1×=﹣.
故答案是:﹣.
【点睛】
考查了切线的性质,弧长的计算和扇形面积的计算,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.
4、
【解析】
【分析】
当⊙P在直线AB下方与直线AB相切时,可求得此时m的值;当⊙P在直线AB上方与直线AB相切时,可求得此时m的值,从而可确定符合题意的m的取值范围.
【详解】
∵圆心P的坐标为(1,0),⊙P与y轴相切与点O
∴⊙P的半径为1
∵点A(-3,0),点 B(0,)
∴OA=3,
∴
∴∠BAO=30°
当⊙P在直线AB下方与直线AB相切时,如图,设切点为C,连接PC
则PC⊥AB,且PC=1
∴AP=2PC=2
∴OP=OA−AP=3−2=1
∴P点坐标为(−1,0)
即m=−1
当⊙P在直线AB上方与直线AB相切时,如图,设切点为C,连接PD
则PD⊥AB,且PD=1
∴AP=2PD=2
∴OP=OA+AP=3+2=5
∴P点坐标为(−5,0)
即m=−5
∴⊙P沿x轴向左移动,当⊙P与直线AB相交时,m的取值范围为
故答案为:
【点睛】
本题考查了直线与圆相交的位置关系,切线的性质定理等知识,这里通过讨论直线与圆相切的情况来解决直线与圆相交的情况,体现了转化思想,注意相切有两种情况,不要出现遗漏的情况.
5、九##9
【解析】
【分析】
根据正多边形的每个中心角相等,且所有中心角的度数和为360°进行求解即可.
【详解】
解:设这个正多边形的边数为n,
∵这个正多边形的中心角是40°,
∴,
∴,
∴这个正多边形是九边形,
故答案为:九.
【点睛】
本题主要考查了正多边形的性质,熟知正多边形中心角的度数和为360度是解题的关键.
三、解答题
1、 (1)见解析
(2)的半径长为.
【解析】
【分析】
(1)根据切线的性质,可得,由平行线的性质,等边对等角,等量代换即可得,进而得证;
(2)连接,根据直径所对的圆周角是直角,勾股定理求得,证明列出比例式,代入数值求解可得,进而求得半径
(1)
证明:如图,连接,
∵是的切线,
∴,
∵,
∴,
∴,
∵,
∴,
∴,即平分;
(2)
解:如图,连接,
在中,,,
由勾股定理得:,
∵是的直径,
∴,
∴,
∵,
∴,
∴,即,
解得:,
∴的半径长为.
【点睛】
本题考查了切线的性质,直径所对的圆周角是直角,相似三角形的性质与判定,勾股定理,掌握圆的相关知识以及相似三角形的是解题的关键.
2、 (1)见解析
(2)
【解析】
【分析】
(1)连接,利用角平分线的定义和等腰三角形的性质可证,从而,得到,根据切线的判定方法可证是的切线;
(2)证明,利用相似三角形的性质可求的半径.
(1)
证明:连接,
∵,
∴,
∴是直径,是的中点.
∵平分,
∴,
∵,
∴,
∴,
∴.
又∵,
∴,
∴,
又∵经过半径的外端,
∴是的切线.
(2)
解:∵,
∴,
在与中,
,,
∴.
∴,
在中,,,
∴.
设半径为,则,,
即,
∴.
∴的半径为.
【点睛】
本题考查了切线的判定,等腰三角形的性质,平行线的判定与性质,以及相似三角形的判定与性质,掌握切线的判定方法是解(1)的关键,掌握相似三角形的判定与性质是解(2)的关键.
3、 (1)见解析
(2)见解析
(3)
【解析】
【分析】
(1)连接,根据直径所对的圆周角等于90°可得,根据等边对等角可得,进而证明,即可求得,从而证明PC是⊙O的切线;
(2)由(1)可得,进而证明,可得,根据等角对等边证明,即可得证;
(3)作于点F,勾股定求得,证明,进而求得的长,设,根据△ACD的面积为12,求得,勾股定理求得,由可得,即可求得的长.
(1)
连接OC,如图,
∵AB是的直径,
,
即.
,,
,
.
,
.
.
又是半径,
是⊙O的切线.
(2)
由(1),得.
,
.
,
.
平分,
.
又,
,即.
,
.
(3)
作于点F,如图,
.
平分,,
.
,由勾股定理得:.
,,
,
.
,
.
设,
,
.
解得或(舍去).
.
Rt△ACF中,由勾股定理得:,
,.
由(2)得,
.
,,
,
,
【点睛】
本题考查了切线的判定,相似三角形的性质与判定,等腰三角形的性质与判定,勾股定理,掌握相似三角形的性质与判定是解题的关键.
4、 (1)见解析
(2)
【解析】
【分析】
(1)要证明DE是⊙O的切线,所以连接OD,只要求出∠ODE=90°即可解答;
(2)连接BD,利用Rt△ADB的面积加上弓形面积即可求出阴影部分的面积.
(1)
证明:连接OD,
∵,
∴∠CAD=∠BAD,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠CAD=∠ODA,
∴AE∥OD,
∴∠E+∠ODE=90°,
∵DE⊥AC,
∴∠E=90°,
∴∠ODE=180°﹣∠E=90°,
∵OD是圆O的半径,
∴DE是⊙O的切线;
(2)
连接BD,
∵AB是⊙O的直径,
∴∠ADB=90°,
∵∠ADE=60°,∠E=90°,
∴∠CAD=90°﹣∠ADE=30°,
∴∠DAB=∠CAD=30°,
∴AB=2BD,
∵,
∴
∴BD=2,BA=4,
∴OD=OB=2,
∴△ODB是等边三角形,
∴∠DOB=60°,
∴△ADB的面积=AD•DB
=×2×2
=2,
∵OA=OB,
∴△DOB的面积=△ADB的面积=,
∴阴影部分的面积为:
△ADB的面积+扇形DOB的面积﹣△DOB的面积
=2﹣
=,
∴阴影部分的面积为:.
【点睛】
本题考查了切线的判定与性质,圆周角定理,扇形的面积公式,勾股定理,含30°角的直角三角形,根据题目的已知条件并结合图形,添加适当的辅助线是解题的关键.
5、 (1)见解析;
(2)见解析
【解析】
【分析】
(1)由AB=AC知∠ABC=∠ACB,结合∠ACB=∠BCD,∠ABC=∠ADC得∠BCD=∠ADC,从而得证;
(2)连接OA,由∠CAF=∠CFA知∠ACD=∠CAF+∠CFA=2∠CAF,结合∠ACB=∠BCD得∠ACD=2∠ACB,∠CAF=∠ACB,据此可知AF∥BC,从而得OA⊥AF,从而得证.
(1)
解:∵,
∴,
又∵,
∴,
∴ ;
(2)
解:如图,连接OA,
∵,
∴,
∴,
∵,
∴,
∴,
∵已知,
∴,
∴,
∴,
∴,
∴AF为⊙O的切线.
【点睛】
本题考查了圆周角定理、垂径定理推论、切线的判定、平行线的判定和性质,熟练掌握切线的判定定理是解题的关键.
相关试卷
这是一份初中冀教版第29章 直线与圆的位置关系综合与测试精品课时作业,共36页。
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试课时训练,共35页。
这是一份初中冀教版第29章 直线与圆的位置关系综合与测试课后练习题,共35页。试卷主要包含了在平面直角坐标系中,以点等内容,欢迎下载使用。
