![精品试卷冀教版九年级数学下册第二十九章直线与圆的位置关系定向训练试题(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12734743/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷冀教版九年级数学下册第二十九章直线与圆的位置关系定向训练试题(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12734743/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷冀教版九年级数学下册第二十九章直线与圆的位置关系定向训练试题(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12734743/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中冀教版第29章 直线与圆的位置关系综合与测试精品课时作业
展开
这是一份初中冀教版第29章 直线与圆的位置关系综合与测试精品课时作业,共36页。
九年级数学下册第二十九章直线与圆的位置关系定向训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,为正六边形边上一动点,点从点出发,沿六边形的边以1cm/s的速度按逆时针方向运动,运动到点停止.设点的运动时间为,以点、、为顶点的三角形的面积是,则下列图像能大致反映与的函数关系的是( )
A. B.
C. D.
2、在ABC中,∠B=45°,AB=6;①AC=4;②AC=8;③外接圆半径为4.请在给出的3个条件中选取一个,使得BC的长唯一.可以选取的是( )
A.① B.② C.③ D.①或③
3、已知半径为5的圆,直线l上一点到圆心的距离是5,则直线和圆的位置关系为( )
A.相切 B.相离 C.相切或相交 D.相切或相离
4、在中,,cm,cm.以C为圆心,r为半径的与直线AB相切.则r的取值正确的是( )
A.2cm B.2.4cm C.3cm D.3.5cm
5、已知⊙O的半径为3,点P到圆心O的距离为4,则点P与⊙O的位置关系是( )
A.点P在⊙O外 B.点P在⊙O上 C.点P在⊙O内 D.无法确定
6、在平面直角坐标系xOy中,已知点A(﹣4,﹣3),以点A为圆心,4为半径画⊙A,则坐标原点O与⊙A的位置关系是( )
A.点O在⊙A内 B.点O在⊙A外
C.点O在⊙A上 D.以上都有可能
7、如图所示,⊙O的半径为5,点O到直线l的距离为7,P是直线l上的一个动点,PQ与⊙O相切于点Q.则PQ的最小值为( )
A. B. C.2 D.2
8、如图,AB是⊙O的直径,C,D是⊙O上两点,AD=CD,过点C作⊙O的切线交AB的延长线于点E,若∠E=50°,则∠ACD等于( )
A.40° B.50° C.55° D.60°
9、一个正多边形的半径与边长相等,则这个正多边形的边数为( )
A.4 B.5 C.6 D.8
10、在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2,下列说法错误的是( )
A.当a<5时,点B在⊙A内 B.当1<a<5时,点B在⊙A内
C.当a<1时,点B在⊙A外 D.当a>5时,点B在⊙A外
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,点O是的AB边上一点,,以OB长为半径作,与AC相切于点D.若,,则的半径长为______.
2、如图,已知正方形ABCD和正△EGF都内接于⊙O,当EF∥BC时,的度数为 _____.
3、如图,半径为2的与正五边形ABCDE的边AB,DE分别相切于点B,D,则劣弧BD的长为______.
4、已知正六边形的周长是24,则这个正六边形的半径为_____ .
5、如图,五边形是⊙的内接正五边形,则的度数是____.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在平面直角坐标系中,,的半径为1.如果将线段绕原点逆时针旋转后的对应线段所在的直线与相切,且切点在线段上,那么线段就是⊙C 的“关联线段”,其中满足题意的最小就是线段与的“关联角”.
(1)如图1,如果线段是的“关联线段”,那么它的“关联角”为______.
(2)如图2,如果、、、、、.那么的“关联线段”有______(填序号,可多选).
①线段;②线段;③线段
(3)如图3,如果、,线段是的“关联线段”,那么的取值范围是______.
(4)如图4,如果点的横坐标为,且存在以为端点,长度为的线段是的“关联线段”,那么的取值范围是______.
2、如图,在中,,平分,与交于点,,垂足为,与交于点,经过,,三点的与交于点.
(1)求证是的切线;
(2)若,,求的半径.
3、数学课上老师提出问题:“在矩形中,,,是的中点,是边上一点,以为圆心,为半径作,当等于多少时,与矩形的边相切?”.
小明的思路是:解题应分类讨论,显然不可能与边及所在直线相切,只需讨论与边及相切两种情形.请你根据小明所画的图形解决下列问题:
(1)如图1,当与相切于点时,求的长;
(2)如图2,当与相切时,
①求的长;
②若点从点出发沿射线移动,连接,是的中点,则在点的移动过程中,直接写出点在内的路径长为______.
4、如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(1,0),(7,0).
(1)对于坐标平面内的一点P,给出如下定义:如果∠APB=45°,那么称点P为线段AB的“完美点”.
①设A、B、P三点所在圆的圆心为C,则点C的坐标是 ,⊙C的半径是 ;
②y轴正半轴上是否有线段AB的“完美点”?如果有,求出“完美点”的坐标;如果没有,请说明理由;
(2)若点P在y轴负半轴上运动,则当∠APB的度数最大时,点P的坐标为 .
5、如图,△ABC内接于⊙O,AB是⊙O的直径,直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DC,AB的延长线交于点E.
(1)求证:直线DC是⊙O的切线;
(2)若BC=4,∠CAB=30°,求图中阴影部分的面积(结果保留π).
-参考答案-
一、单选题
1、A
【解析】
【分析】
设正六边形的边长为1,当在上时,过作于 而 求解此时的函数解析式,当在上时,延长交于点 过作于 并求解此时的函数解析式,当在上时,连接 并求解此时的函数解析式,由正六边形的对称性可得:在上的图象与在上的图象是对称的,在上的图象与在上的图象是对称的,从而可得答案.
【详解】
解:设正六边形的边长为1,当在上时,
过作于 而
当在上时,延长交于点 过作于
同理:
则为等边三角形,
当在上时,连接
由正六边形的性质可得:
由正六边形的对称性可得: 而
由正六边形的对称性可得:在上的图象与在上的图象是对称的,
在上的图象与在上的图象是对称的,
所以符合题意的是A,
故选A
【点睛】
本题考查的是动点问题的函数图象,锐角三角函数的应用,正多边形的性质,清晰的分类讨论是解本题的关键.
2、B
【解析】
【分析】
作AD⊥BC于D,求出AD的长,根据直线和圆的位置关系判断即可.
【详解】
解:作AD⊥BC于D,
∵∠B=45°,AB=6;
∴,
设三角形ABC1的外接圆为O,连接OA、OC1,
∵∠B=45°,
∴∠O=90°,
∵外接圆半径为4,
∴;
∵
∴以点A为圆心,AC为半径画圆,如图所示,当AC=4时,圆A与射线BD没有交点;
当AC=8时,圆A与射线BD只有一个交点;当AC= 时,圆A与射线BD有两个交点;
故选:B.
【点睛】
本题考查了直角三角形的性质和射线与圆的交点,解题关键是求出AC长和点A到BC的距离.
3、C
【解析】
【分析】
根据若直线上一点到圆心的距离等于圆的半径,则圆心到直线的距离等于或小于圆的半径,此时直线和圆相交或相切.
【详解】
解:∵半径为5的圆,直线l上一点到圆心的距离是5,
∴圆心到直线的距离等于或小于5,
∴直线和圆的位置关系为相交或相切,
故选:C.
【点睛】
本题考查了直线和圆的位置关系,判断的依据是半径和直线到圆心的距离的大小关系:设⊙O的半径为r,圆心O到直线l的距离为d,①直线l和⊙O相交⇔d<r;②直线l和⊙O相切⇔d=r;③直线l和⊙O相离⇔d>r.
4、B
【解析】
【分析】
如图所示,过C作CD⊥AB,交AB于点D,在直角三角形ABC中,由AC与BC的长,利用勾股定理求出AB的长,利用面积法求出CD的长,即为所求的r.
【详解】
解:如图所示,过C作CD⊥AB,交AB于点D,
在Rt△ABC中,AC=3cm,BC=4cm,
根据勾股定理得:AB==5(cm),
∵S△ABC=BC•AC=AB•CD,
∴×3×4=×10×CD,
解得:CD=2.4,
则r=2.4(cm).
故选:B.
【点睛】
此题考查了切线的性质,勾股定理,以及三角形面积求法,熟练掌握切线的性质是解本题的关键.
5、A
【解析】
【分析】
根据点与圆心的距离与半径的大小关系即可确定点P与⊙O的位置关系.
【详解】
解:∵⊙O的半径分别是3,点P到圆心O的距离为4,
∴d>r,
∴点P与⊙O的位置关系是:点在圆外.
故选:A.
【点睛】
本题主要考查了点与圆的位置关系,准确分析判断是解题的关键.
6、B
【解析】
【分析】
本题可先由勾股定理等性质算出点与圆心的距离d,再根据点与圆心的距离与半径的大小关系,即当d>r时,点在圆外;当d=r时,点在圆上;点在圆外;当d<r时,点在圆内;来确定点与圆的位置关系.
【详解】
解:∵点A(﹣4,﹣3),
∴,
∵⊙A的半径为4,
∴,
∴点O在⊙A外;
故选:B
【点睛】
本题考查了点与圆的位置关系及坐标与图形性质,能够根据勾股定理求得点到圆心的距离,根据数量关系判断点和圆的位置关系.
7、C
【解析】
【分析】
由切线的性质可知OQ⊥PQ,在Rt△OPQ中,OQ=5,则可知当OP最小时,PQ有最小值,当OP⊥l时,OP最小,利用勾股定理可求得PQ的最小值.
【详解】
∵PQ与⊙O相切于点Q,
∴OQ⊥PQ,
∴PQ2=OP2-OQ2=OP2-52=OP2-25,
∴当OP最小时,PQ有最小值,
∵点O到直线l的距离为7,
∴OP的最小值为7,
∴PQ的最小值=,
故选:C.
【点睛】
本题主要考查切线的性质,掌握过切点的半径与切线垂直是解题的关键.
8、C
【解析】
【分析】
连接OC,根据切线的性质可得,利用三角形内角和定理可得,根据邻补角得出,再由同弧所对的圆周角是圆心角的一半得出,利用等边对等角及三角形内角和定理即可得出结果.
【详解】
解:连接OC,如图所示:
∵CE与相切,
∴,
∴,
∵,
∴,
∴,
∴,
∵,
∴,
故选:C.
【点睛】
题目主要考查直线与圆的位置关系,三角形内角和定理,圆周角定理、等边对等角求角度等,理解题意,作出辅助线,综合运用这些知识点是解题关键.
9、C
【解析】
【分析】
如图(见解析),先根据等边三角形的判定与性质可得,再根据正多边形的中心角与边数的关系即可得.
【详解】
解:如图,由题意得:,
是等边三角形,
,
则这个正多边形的边数为,
故选:C.
【点睛】
本题考查了正多边形,熟练掌握正多边形的中心角与边数的关系是解题关键.
10、A
【解析】
【分析】
根据数轴以及圆的半径可得当d=r时,⊙A与数轴交于两点:1、5,进而根据点到圆心的距离与半径比较即可求得点与圆的位置关系,进而逐项分析判断即可
【详解】
解:∵圆心A在数轴上的坐标为3,圆的半径为2,
∴当d=r时,⊙A与数轴交于两点:1、5,
故当a=1、5时点B在⊙A上;
当d<r即当1<a<5时,点B在⊙A内;
当d>r即当a<1或a>5时,点B在⊙A外.
由以上结论可知选项B、C、D正确,选项A错误.
故选A.
【点睛】
本题考查了数轴,点与圆的位置关系,掌握点与圆的位置关系是解题的关键.
二、填空题
1、##
【解析】
【分析】
在Rt△ABC中,利用正弦函数求得AB的长,再在Rt△AOD中,利用正弦函数得到关于r的方程,求解即可.
【详解】
解:在Rt△ABC中,BC=4,sinA=,
∴=,即=,
∴AB=5,
连接OD,
∵AC是⊙O的切线,
∴OD⊥AC,
设⊙O的半径为r,则OD= OB=r,
∴AO=5- r,
在Rt△AOD中,sinA=,
∴=,即=,
∴r=.
经检验r=是方程的解,
∴⊙O的半径长为.
故答案为:.
【点睛】
本题考查了切线的性质,正弦函数,解题的关键是掌握切线的性质、解直角三角形等知识点.
2、
【解析】
【分析】
连接,并延长交于点,连接,先根据圆内接正多边形的性质可得,再根据圆周角定理可得,然后根据直角三角形的性质可得,从而可得,于是可得答案.
【详解】
解:如图,连接,并延长交于点,连接,
正方形和正都内接于,
,
由圆周角定理得:,
,
,
,
,
则的度数为,
故答案为:.
【点睛】
本题考查了圆周角定理、圆内接正多边形的性质等知识点,熟练掌握圆内接正多边形的性质是解题关键.
3、##
【解析】
【分析】
连接OB,OD,根据正多边形内角和公式可求出∠E、∠A,根据切线的性质可求出∠OBA、∠ODE,从而可求出∠BOD的度数,根据弧长的公式即可得到结论.
【详解】
解:连接OB,OD,
∵五边形ABCDE是正五边形,
∴∠E=∠A=.
∵AB、DE与⊙O相切,
∴∠OBA=∠ODE=90°,
∴∠BOD=(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,
∴劣弧BD的长为,
故答案为:.
【点睛】
本题主要考查了切线的性质、正五边形的性质、多边形的内角和公式、熟练掌握切线的性质是解决本题的关键.
4、4
【解析】
【分析】
由于正六边形可以由其半径分为六个全等的正三角形,而三角形的边长就是正六边形的半径,由此即可求解.
【详解】
解:∵正六边形可以由其半径分为六个全等的正三角形,
而三角形的边长就是正六边形的半径,
又∵正六边形的周长为24,
∴正六边形边长为24÷6=4,
∴正六边形的半径等于4.
故答案为4.
【点睛】
此题主要考查正多边形和圆,解题的关键是熟练掌握基本知识,属于中考基础题.
5、
【解析】
【分析】
根据圆内接正五边形的定义求出∠COD,利用三角形内角和求出答案.
【详解】
解:∵五边形是⊙的内接正五边形,
∴∠COD=,
∵OC=OD,
∴=,
故答案为:.
【点睛】
此题考查了圆内接正五边形的性质,三角形内角和定理,同圆的半径相等的性质,熟记圆内接正五边形的性质是解题的关键.
三、解答题
1、 (1)
(2)②,③
(3)
(4)
【解析】
【分析】
(1)作OD与相切,此时所得最小,根据切线的性质可得,再由含角的直角三角形的特殊性质可得,再由勾股定理可得OD长度,判断切点在OD上即可得
(2)根据勾股定理求出各点与原点的距离与最长切线距离比较即可得;
(3)线段BD绕点O的旋转路线的半径为1的上,当OD与相切时,由(1)可得:,根据题意即可确定t的取值范围,得出线段BD是的“关联线段”;
(4)当m取最大值时,M点运动最小半径是O到过点的直线l的距离m,根据题意可得,得出,即为m的最大值;当m取最小值时,作出相应图形,根据题意可得,再由,及点M所在位置,即可确定m的最小值,综合即可得.
(1)
解:如图所示:作OD与相切,
∴,
∵,,
∴,
∴,
∴此时的角度最小,且,
∴切点在线段OD上,
∴OA的关联角为;
(2)
解:如图所示:连接,,,,
∵,,
∴,
∴切点不在线段上,不是的“关联线段”;
∵,,
∴,,
∵,
∴是的“关联线段”;
∵,
∴是的“关联线段”;
(3)
解:,,线段BD绕点O的旋转路线的半径为1的上,
当OD与相切时,
由(1)可得:,
∴当时,线段BD是的“关联线段”,
故答案为:;
(4)
解:如图所示:当m取最大值时,
M点运动最小半径是O到过点的直线l的距离是m,
∵,,
∴,
∴,
∴m的最大值为4,
如图所示:当m取小值时,
开始时存在ME与相切,
∵,,
∴,
∵,及点M所在位置,
∴,
综上可得:,
故答案为:.
【点睛】
题目主要考查直线与圆的位置关系,线段旋转的性质,勾股定理解三角形等,理解题意,作出相应图象是解题关键.
2、 (1)见解析
(2)
【解析】
【分析】
(1)连接,利用角平分线的定义和等腰三角形的性质可证,从而,得到,根据切线的判定方法可证是的切线;
(2)证明,利用相似三角形的性质可求的半径.
(1)
证明:连接,
∵,
∴,
∴是直径,是的中点.
∵平分,
∴,
∵,
∴,
∴,
∴.
又∵,
∴,
∴,
又∵经过半径的外端,
∴是的切线.
(2)
解:∵,
∴,
在与中,
,,
∴.
∴,
在中,,,
∴.
设半径为,则,,
即,
∴.
∴的半径为.
【点睛】
本题考查了切线的判定,等腰三角形的性质,平行线的判定与性质,以及相似三角形的判定与性质,掌握切线的判定方法是解(1)的关键,掌握相似三角形的判定与性质是解(2)的关键.
3、 (1)BP=2
(2)①4.8;②9.6
【解析】
【分析】
(1)连接PT,由⊙P与AD相切于点T,可得四边形ABPT是矩形,即得PT=AB=4=PE,在Rt△BPE中,用勾股定理即得BP=2;
(2)①由⊙P与CD相切,有PC=PE,设BP=x,则PC=PE=10-x,在Rt△BPE中,由勾股定理得x2+22=(10-x)2,即可解得BP=4.8;②点M在⊙P内的路径为EM,过P作PN⊥EM于N,由EM是△ABQ的中位线,可得四边形BPNE是矩形,即知EN=BP=4.8,故EM=2EN=9.6.
(1)
连接PT,如图:
∵⊙P与AD相切于点T,
∴∠ATP=90°,
∵四边形ABCD是矩形,
∴∠A=∠B=90°,
∴四边形ABPT是矩形,
∴PT=AB=4=PE,
∵E是AB的中点,
∴BE=AB=2,
在Rt△BPE中,;
(2)
①∵⊙P与CD相切,
∴PC=PE,
设BP=x,则PC=PE=10-x,
在Rt△BPE中,BP2+BE2=PE2,
∴x2+22=(10-x)2,
解得x=4.8,
∴BP=4.8;
②点Q从点B出发沿射线BC移动,M是AQ的中点,点M在⊙P内的路径为EM,过P作PN⊥EM于N,如图:
由题可知,EM是△ABQ的中位线,
∴EM∥BQ,
∴∠BEM=90°=∠B,
∵PN⊥EM,
∴∠PNE=90°,EM=2EN,
∴四边形BPNE是矩形,
∴EN=BP=4.8,
∴EM=2EN=9.6.
故答案为:9.6.
【点睛】
本题考查矩形与圆的综合应用,涉及直线和圆相切、勾股定理、动点轨迹等,解题的关键是理解M的轨迹是△ABQ的中位线.
4、 (1)①(4,3)或C(4,−3),,②,
(2)
【解析】
【分析】
(1)①在x轴的上方,作以AB为斜边的等腰直角三角形△ACB,易知A,B,P三点在⊙C上,圆心C的坐标为(4,3),半径为3,根据对称性可知点C(4,−3)也满足条件;②当圆心为C(4,3)时,过点C作CD⊥y轴于D,则D(0,3),CD=4,根据⊙C的半径得⊙C与y轴相交,设交点为,,此时,在y轴的正半轴上,连接、、CA,则==CA =r=3,得,即可得;
(2)如果点P在y轴的负半轴上,设此时圆心为E,则E在第四象限,在y轴的负半轴上任取一点M(不与点P重合),连接MA,MB,PA,PB,设MB交于⊙E于点N,连接NA,则∠APB=∠ANB,∠ANB是△MAN的外角,∠ANB>∠AMB,即∠APB>∠AMB,过点E作EF⊥x轴于F,连接EA,EP,则AF=AB=3,OF=4,四边形OPEF是矩形,OP=EF,PE=OF=4,得,则,即可得.
(1)
①如图1中,
在x轴的上方,作以AB为斜边的等腰直角三角形△ACB,易知A,B,P三点在⊙C上,
圆心C的坐标为(4,3),半径为3,
根据对称性可知点C(4,−3)也满足条件,
故答案是:(4,3)或C(4,−3),,
②y轴的正半轴上存在线段AB的“等角点”。
如图2所示,当圆心为C(4,3)时,过点C作CD⊥y轴于D,则D(0,3),CD=4,
∵⊙C的半径,
∴⊙C与y轴相交,
设交点为,,此时,在y轴的正半轴上,
连接、、CA,则==CA =r=3,
∵CD⊥y轴,CD=4,,
∴,
∴,;
当圆心为C(4,-3)时,点P在y轴的负半轴上,不符合题意;
故答案为:,
(2)
当过点A,B的圆与y轴负半轴相切于点P时,∠APB最大,理由如下:
如果点P在y轴的负半轴上,设此时圆心为E,则E在第四象限,
如图3所示,在y轴的负半轴上任取一点M(不与点P重合),
连接MA,MB,PA,PB,设MB交于⊙E于点N,连接NA,
∵点P,点N在⊙E上,
∴∠APB=∠ANB,
∵∠ANB是△MAN的外角,
∴∠ANB>∠AMB,
即∠APB>∠AMB,
此时,过点E作EF⊥x轴于F,连接EA,EP,则AF=AB=3,OF=4,
∵⊙E与y轴相切于点P,则EP⊥y轴,
∴四边形OPEF是矩形,OP=EF,PE=OF=4,
∴⊙E的半径为4,即EA=4,
∴在Rt△AEF中,,
∴,
即 .
故答案为:
【点睛】
本题考查了圆与三角形,勾股定理,三角形的外角,矩形的性质,解题的关键是掌握这些知识点.
5、 (1)见解析
(2)
【解析】
【分析】
(1)连接OC,由题意得,根据等边对等角得,,即可得,则,即可得;
(2)根据三角形的外角定理得,又根据得是等边三角形,则,根据三角形内角和定理得,根据直角三角形的性质得,根据勾股定理得,用三角形OEC的面积减去扇形OCB的面积即可得.
(1)
证明:如图所示,连接OC,
∵AB是的直径,直线l与相切于点A,
∴,
∵,,
∴,,
∴,
∴,
∴直线DC是的切线.
(2)
解:∵,
∴,
又∵,
∴是等边三角形,
∴,
在中,,
∴,
∴,
∴,
∴阴影部分的面积=.
【点睛】
本题考查了切线,三角形的外角定理,等边三角形的判定与性质,直角三角形的性质,勾股定理,解题的关键是掌握这些知识点.
相关试卷
这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品随堂练习题,共31页。试卷主要包含了已知M等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课时训练,共34页。
这是一份2020-2021学年第29章 直线与圆的位置关系综合与测试精品测试题,共26页。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)