冀教版九年级下册第30章 二次函数综合与测试同步达标检测题
展开
这是一份冀教版九年级下册第30章 二次函数综合与测试同步达标检测题,共29页。试卷主要包含了已知平面直角坐标系中有点A等内容,欢迎下载使用。
九年级数学下册第三十章二次函数专题训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、2020年2月3日,随着南立交匝道最后一条交通线划线完毕,蒙山大道祊河桥迎来了南北东西方向全线通车,蒙山高架路“踏实落地”,市民从此可一路畅通.蒙山大道祊河桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为( )
A. B. C. D.
2、如图所示,一座抛物线形的拱桥在正常水位时,水面AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
A.4米 B.10米 C.4米 D.12米
3、如图,二次函数y=ax2+bx+c(a≠0)图象与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①abc>0;②b2﹣4ac>0;③当y<0时,x<﹣1或x>3;④3a+c=0.其中正确的有( )
A.4个 B.3个 C.2个 D.1个
4、已知二次函数的图象如图所示,并且关于x的一元二次方程有两个不相等的实数根,下列结论:①;②;③;④.其中正确结论的个数有( )
A.1个 B.2个 C.3个 D.4个
5、已知平面直角坐标系中有点A(﹣4,﹣4),点B(a,0),二次函数y=x2+(k﹣3)x﹣2k的图象必过一定点C,则AB+BC的最小值是( )
A.4 B.2 C.6 D.3
6、将抛物线向下平移1个单位长度,再向左平移2个单位长度后,得到的抛物线表达式是( )
A. B. C. D.
7、一次函数与二次函数在同一平面直角坐标系中的图象可能是( )
A. B.
C. D.
8、已知关于的二次函数,当时,随的增大而减小,则实数的取值范围是( )
A. B. C. D.
9、在抛物线的图象上有三个点,,,则、、的大小关系为( )
A. B. C. D.
10、若关于的一元二次方程的两根分别为,,则二次函数的对称轴为直线( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、二次函数的图象的顶点坐标为______.
2、已知二次函数y=x2+bx+3图象的对称轴为x=2,则b=________;顶点坐标是________.
3、如图是一座截面为抛物线的拱形桥,当拱顶离水面3米高时,水面宽l为6米,则当水面下降3米时,水面宽度为_______米.(结果保留根号)
4、如图,在平面直角坐标系中,抛物线y=a(x﹣1)2+k(a、k为常数)与x轴交于点A、B,与y轴交于点C,CD∥x轴,与抛物线交于点D.若点A的坐标为(﹣1,0),则线段OB与线段CD的长度和为_____.
5、如图,平面直角坐标系中,以点C(2,)为圆心,以2为半径的圆与x轴交于A,B两点.若二次函数y=x2+bx+c的图象经过点A,B,试确定此二次函数的解析式为 ____________.
三、解答题(5小题,每小题10分,共计50分)
1、某政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,月销售量(件)与销售单价(元)之间的关系可看作一次函数:,已知当销售单价定为25元时,李明每月获得利润为1250元.
(1)求的值;
(2)当销售单价定为多少元时,每月可获得最大利润?并求最大利润是多少?
(注:利润=(销售单价-进价)×销售量)
2、(1)解方程:2x2﹣3x﹣1=0;
(2)用配方法求抛物线y=x2+4x﹣5的开口方向、对称轴和顶点坐标.
3、如图,抛物线y=ax2+bx+4经过点A(﹣1,0),B(2,0)两点,与y轴交于点C,点是拋物线在轴上方,对称轴右侧上的一个动点,设点D的横坐标为m.连接AC,BC,,DC.
(1)求抛物线的函数表达式;
(2)当△BCD的面积与△AOC的面积和为时,求m的值;
(3)在(2)的条件下,若点M是x轴上一动点,点是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,为顶点的四边形是平行四边形.请直接写出点M的坐标;若不存在,请说明理由.
4、某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间t(天)之间的函数关系为p=,且t为整数,日销售量y(千克)与时间t(天)之间的函数关系如图所示.
(1)求日销售量y与时间t的函数表达式.
(2)哪一天的日销售利润最大?最大利润是多少?
5、已知二次函数的图像经过点,,.
(1)求二次函数的表达式;
(2)若二次函数的图像与轴交于、两点,与轴交于点,其顶点为,则以,,,为顶点的四边形的面积为__________;
(3)将二次函数的图像向左平移个单位后恰好经过坐标原点,则的值为__________.
-参考答案-
一、单选题
1、B
【解析】
【分析】
直接利用图象设出抛物线解析式,进而得出答案.
【详解】
∵拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,
∴设抛物线解析式为y=ax2,点B(45,-78),
∴-78=452a,
解得:a=,
∴此抛物线钢拱的函数表达式为,
故选:B.
【点睛】
本题主要考查了二次函数的应用,正确设出抛物线解析式是解题关键.
2、B
【解析】
【分析】
以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax²,由此可得A(﹣10,﹣4),B(10,﹣4),即可求函数解析式为y=﹣ x²,再将y=﹣1代入解析式,求出C、D点的横坐标即可求CD的长.
【详解】
解:以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
设抛物线的解析式为y=ax2,
∵O点到水面AB的距离为4米,
∴A、B点的纵坐标为﹣4,
∵水面AB宽为20米,
∴A(﹣10,﹣4),B(10,﹣4),
将A代入y=ax2,
﹣4=100a,
∴a=﹣,
∴y=﹣x2,
∵水位上升3米就达到警戒水位CD,
∴C点的纵坐标为﹣1,
∴﹣1=﹣x2,
∴x=±5,
∴CD=10,
故选:B.
【点睛】
本题考查二次函数在实际问题中的应用,找对位置建立坐标系再求解二次函数是关键.
3、B
【解析】
【分析】
①根据函数图象及函数的对称轴在y轴右侧,则ab<0,而c>0,即可求解;②抛物线和x轴有两个交点,即可求解;③点B坐标为(﹣1,0),点A(3,0),即可求解;④对称轴为x=1,则b=﹣2a,点B(﹣1,0),故a﹣b+c=0,即可求解.
【详解】
解:①∵函数图象开口向下
∴
又函数的对称轴在y轴右侧,
∴
∴
∵抛物线与y轴正半轴相交,
∴c>0,
∴abc<0,故原答案错误,不符合题意;
②∵抛物线和x轴有两个交点,
∴b2﹣4ac>0正确,符合题意;
③∵点B坐标为(﹣1,0),且对称轴为x=1,
∴点A(3,0),
∴当y<0时,x<﹣1或x>3.故正确,符合题意;
④∵函数的对称轴为:x=﹣=1,
∴b=﹣2a,
∵点B坐标为(﹣1,0),
∴a﹣b+c=0,
而b=﹣2a,
∴
即3a+c=0,正确,符合题意;
故选:B.
【点睛】
本题考查的是二次函数图象与系数的关系,要求学生熟悉函数的基本性质,能熟练求解函数与坐标轴的交点等.
4、B
【解析】
【分析】
根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标等知识,逐个判断即可.
【详解】
解:抛物线与x轴有两个不同交点,因此b2-4ac>0,故①是错误的;
由图象可知,当x=-1时,y=a-b+c>0,因此③是错误的;
由开口方向可得,a>0,对称轴在y轴右侧,a、b异号,因此b-2
因此④正确的,
综上所述,正确的有2个,
故选:B.
【点睛】
考查二次函数的图象和性质,掌握a、b、c的值决定抛物线的位置以及二次函数与一元二次方程的关系,是正确判断的前提.
5、C
【解析】
【分析】
将抛物线解析式变形求出点C坐标,再根据两点之间线段最短求出AB+BC的最小值即可.
【详解】
解:二次函数y=x2+(k﹣3)x﹣2k=(x-2)(x-1+k)-2
∴函数图象一定经过点C(2,-2)
点C关于x轴对称的点的坐标为(2,2),连接,如图,
∵
∴
故选:C
【点睛】
本题主要考查了二次函数的性质,两点之间线段最短以及勾股定理等知识,明确“两点之间线段最短”是解答本题的关键.
6、C
【解析】
【分析】
根据平移的规律:左加右减,上加下减可得函数解析式.
【详解】
解:因为y=x2-2x+3=(x-1)2+2.
所以将抛物线y=(x-1)2+2先向下平移1个单位长度,再向左平移2个单位长度后,得到的抛物线的表达式为y=(x-1+2)2+2-1,即y=(x+1)2+1.
故选:C.
【点睛】
本题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.
7、C
【解析】
【分析】
逐一分析四个选项,根据二次函数图象的开口以及对称轴与y轴的关系即可得出a、b的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.
【详解】
A、∵二次函数图象开口向下,对称轴在y轴左侧,
∴a<0,b<0,
∴一次函数图象应该过第二、三、四象限,A不可能;
B、∵二次函数图象开口向上,对称轴在y轴右侧,
∴a>0,b<0,
∴一次函数图象应该过第一、三、四象限,B不可能;
C、∵二次函数图象开口向下,对称轴在y轴左侧,
∴a<0,b<0,
∴一次函数图象应该过第二、三、四象限,C可能;
D、∵二次函数图象开口向下,对称轴在y轴左侧,
∴a<0,b<0,
∴一次函数图象应该过第二、三、四象限,D不可能.
故选:C.
【点睛】
本题考查了二次函数的图象以及一次函数图象与系数的关系,解题的关键是根据a、b的正负确定一次函数图象经过的象限.
8、C
【解析】
【分析】
由二次函数的性质,取得开口方向以及对称轴,进而可确定出的范围.
【详解】
解:,
抛物线开口向上,对称轴为,
当时,随的增大而减小,
在时,随的增大而减小,
,
解得,
故选:C.
【点睛】
本题考查二次函数图象性质,不等式的解法.能够得出关于的不等式,并正确求解不等式是解题关键.
9、C
【解析】
【分析】
把三个点,,的横坐标代入解析式,然后比较函数值大小即可.
【详解】
解:把三个点,,的横坐标代入解析式得,
;;;
所以,,
故选:C.
【点睛】
本题考查了二次函数的性质,解题关键是求出函数值,再比较大小.
10、C
【解析】
【分析】
根据两根之和公式可以求出对称轴公式.
【详解】
解:∵一元二次方程ax2+bx+c=0的两个根为−2和4,
∴x1+x2=− =2.
∴二次函数的对称轴为x=−=×2=1.
故选:C.
【点睛】
本题考查了求二次函数的对称轴,要求熟悉二次函数与一元二次方程的关系和两根之和公式,并熟练运用.
二、填空题
1、
【解析】
【分析】
根据的意义直接解答即可.
【详解】
解:二次函数的图象的顶点坐标是.
故答案为.
【点睛】
本题考查了二次函数的性质,要熟悉顶点式的意义,并明确:(a≠0)的顶点坐标为(0,c).
2、 4 (2,7)
【解析】
【分析】
由对称轴公式即可求得b,把解析式化成顶点式即可求得顶点坐标.
【详解】
解:∵二次函数y=x2+bx+3图象的对称轴为x=2,
∴−=2,
∴b=4,
∴二次函数y=−x2+4x+3,
∵y=−x2+4x+3=−(x−2)2+7,
∴顶点坐标是(2,7),
故答案为:4,(2,7).
【点睛】
本题考查了二次函数的图象和性质,熟知对称轴公式和二次函数解析式的三种表现形式是解题的关键.
3、6
【解析】
【分析】
建立平面直角坐标系,根据题意设出抛物线解析式,利用待定系数法求出解析式,根据题意计算即可.
【详解】
建立平面直角坐标系如图:
则抛物线顶点C坐标为(0,3),
设抛物线解析式y=ax2+3,
将A点坐标(﹣3,0)代入,可得:0=9a+3,
解得:a=﹣,
故抛物线解析式为y=﹣x2+3,
当水面下降3米,通过抛物线在图上的观察可转化为:
当y=﹣3时,对应的抛物线上两点之间的距离,
也就是直线y=﹣3与抛物线相交的两点之间的距离,
将y=﹣3代入抛物线解析式得出:﹣3=﹣x2+3,
解得:x=±,
所以水面宽度为米,
故答案为:.
【点睛】
本题考查的是二次函数的应用,掌握二次函数的性质、正确建立平面直角坐标系是解题的关键.
4、5
【解析】
【分析】
先求出抛物线y= a(x-1)2+k(a、k为常数)的对称轴,然后根据A和B、C和D均关于对称轴直线x=1对称,分别求出B和D点的坐标,即可求出OB和CD的长.
【详解】
解:∵抛物线y=a(x-1)2+k(a、k为常数),
∴对称轴为直线x=1,
∵点A和点B关于直线x=1对称,且点A(-1,0),
∴点B(3,0),
∴OB=3,
∵C点和D点关于x=1对称,且点C(0,a+k),
∴点D(2,a+k),
∴CD=2,
∴线段OB与线段CD的长度和为5,
故答案为5.
【点睛】
本题主要考查了二次函数的图象与性质,二次函数与与坐标轴交点的知识,解答本题的关键求出抛物线y=a(x-1)2+k(a、k为常数)的对称轴为x=1,此题难度不大.
5、y=x2-4x+3
【解析】
【分析】
过点C作CH⊥AB于点H,然后利用垂径定理求出CH、AH和BH的长度,进而得到点A和点B的坐标,再将A、B的坐标代入函数解析式求得b与c,最后求得二次函数的解析式.
【详解】
解:过点C作CH⊥AB于点H,则AH=BH,
∵C(2,),
∴CH=,
∵半径为2,
∴AH=BH==1,
∵A(1,0),B(3,0),
∴二次函数的解析式为y=(x﹣1)(x﹣3)=x2﹣4x+3,
故答案为:y=x2-4x+3.
【点睛】
本题考查了圆的垂径定理、二次函数的解析式,解题的关键是过点C作CH⊥AB于点H,利用垂径定理求出点A和点B的坐标.
三、解答题
1、 (1)的值是500;
(2)当销售单价定为35元时,每月可获得最大利润,最大利润是2250元
【解析】
【分析】
(1)根据利润=(销售单价-进价)×销售量列方程求解即可;
(2)根据利润=(销售单价-进价)×销售量得到w关于x的二次函数关系式,利用二次函数的性质求解即可.
(1)
解:由题意可得,,
解得:,
答:的值是500;
(2)
解:设利润为w元,
由题意:,
,
∵-10
相关试卷
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试同步训练题,共29页。试卷主要包含了对于抛物线下列说法正确的是等内容,欢迎下载使用。
这是一份数学九年级下册第30章 二次函数综合与测试课时作业,共36页。试卷主要包含了抛物线y=﹣2,若点A等内容,欢迎下载使用。
这是一份初中冀教版第30章 二次函数综合与测试课时作业,共26页。试卷主要包含了若点A,二次函数图像的顶点坐标是等内容,欢迎下载使用。