开学活动
搜索
    上传资料 赚现金

    2022年最新冀教版九年级数学下册第三十章二次函数章节测试练习题(精选含解析)

    2022年最新冀教版九年级数学下册第三十章二次函数章节测试练习题(精选含解析)第1页
    2022年最新冀教版九年级数学下册第三十章二次函数章节测试练习题(精选含解析)第2页
    2022年最新冀教版九年级数学下册第三十章二次函数章节测试练习题(精选含解析)第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年第30章 二次函数综合与测试课后复习题

    展开

    这是一份2020-2021学年第30章 二次函数综合与测试课后复习题,共24页。试卷主要包含了二次函数图像的顶点坐标是,已知点,,都在函数的图象上,则,抛物线y=﹣2,若二次函数y=a等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、一个球从地面竖直向上弹起时的速度为8米/秒,经过秒时球的高度为米,满足公式:表示球弹起时的速度,表示重力系数,取米/秒,则球不低于3米的持续时间是(       A. B. C. D.1秒2、二次函数的自变量与函数值的部分对应值如下表:-3-2-101-11-311-3对于下列结论:①二次函数的图像开口向下;②当时,的增大而减小;③二次函数的最大值是1;④若是二次函数图像与轴交点的横坐标,则,其中,正确的是(       A.①② B.③④ C.①③ D.①②④3、根据表格对应值:x1.11.21.31.4ax2bxc﹣0.590.842.293.76判断关于x的方程ax2bxc=2的一个解x的范围是(       A.1.1<x<1.2 B.1.2<x<1.3 C.1.3<x<1.4 D.无法判定4、已知二次函数的部分图象如图所示,图象过点,对称轴为直线,下列结论错误的是(       A. B. C. D.5、二次函数图像的顶点坐标是(       A.(0,-2) B.(-2,0) C.(2,0) D.(0,2)6、已知点都在函数的图象上,则(       A. B. C. D.7、抛物线y=﹣2(x﹣3)2﹣4的对称轴是(  )A.直线x=3 B.直线x=﹣3 C.直线x=4 D.直线x=﹣48、将抛物线yx2先向右平移3个单位长度,再向上平移5个单位长度,所得抛物线的解析式为(  )A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+39、若二次函数yaxb2ca≠0)的图象,经过平移后可与y=(x+3)2的图象完全重合,则abc的值可能为(       A.a=1,b=0,c=﹣2 B.a=2,b=6,c=0C.a=﹣1,b=﹣3,c=0 D.a=﹣2,b=﹣3,c=﹣210、若将抛物线y=2x2﹣1向上平移2个单位,则所得抛物线对应的函数关系式为(  )A.y=2(x﹣2)2﹣1 B.y=2(x+2)2﹣1 C.y=2x2﹣3 D.y=2x2+1第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、请写出一个开口向下且过点(0,﹣4)的抛物线表达式为 _________________.2、当xm时,两个函数y1=﹣(x﹣4)2+2和y2=﹣(x﹣3)2+1的函数值都随着x的增大而减小,则m的最小值为_____.3、二次函数的图像如图所示,对称轴为直线,根据图中信息可求得该二次函数的解析式为______.4、二次函数yax2bx+4的图象如图所示,则关于x的方程ax+1)2bx+1)=﹣4的根为______.5、已知某函数的图象经过两点,下面有四个推断:①若此函数的图象为直线,则此函数的图象与直线平行;②若此函数的图象为双曲线,则也在此函数的图象上;③若此函数的图象为抛物线,且开口向下,则此函数图象一定与y轴的负半轴相交;④若此函数的图象为抛物线,且开口向上,则此函数图象对称轴在直线左侧.所有合理推断的序号是______.三、解答题(5小题,每小题10分,共计50分)1、高邮双黄鸭蛋已入选全世界最值得品尝百种味道,某专卖店根据以往销售数据发现:高邮双黄鸭蛋每天销售数量y(盒)与销售单价x(元/盒)的关系满足一次函数,每盒高邮双黄鸭蛋各项成本合计为40元/盒.(1)若该专卖店某天获利800元,求销售单价x(元/盒)的值;(2)当销售单价x定为多少元/盒时,该专卖店每天获利最大?最大利润为多少?(3)若该专卖店决定每销售一盒就捐出元给当地学校作为贫困学生的助学金,当每天的销售量不低于25盒时,为了确保该店每天扣除捐出后的利润随着销售量的减小而增大,则m的取值范围为______.2、已知抛物线x轴有交点,求m的取值范围.3、如图,在平面直角坐标系中,开口向上的抛物线与轴交于两点,为抛物线的顶点,为坐标原点.若)的长分别是方程的两根,且(1)求抛物线对应的二次函数的解析式;(2)过点交抛物线于点,求点的坐标;(3)在(2)的条件下,过点任作直线交线段于点,设点、点到直线的距离分别为,试求的最大值.4、已知一抛物线的顶点为(2,4),图象过点(1,3).(1)求抛物线的解析式;(2)动点Px,5)能否在抛物线上?请说明理由;(3)若点Aay1),Bby2)都在抛物线上,且ab<0,比较y1y2的大小,并说明理由.5、已知二次函数yax2﹣4ax+3a(1)求该二次函数图象的对称轴以及抛物线与x轴的交点坐标;(2)若该二次函数的图象开口向下,当1≤x≤4时,y的最大值是2,且当1≤x≤4时,函数图象的最高点为点P,最低点为点Q,求△OPQ的面积;(3)若对于该抛物线上的两点Px1y1),Qx2y2),当tx1t+1,x2≥5时,均满足y1y2,请直接写出t的最大值. -参考答案-一、单选题1、A【解析】【分析】根据已知得到函数关系式,将h=3代入,求出t值的差即为答案.【详解】解:由题意得h=3时,解得∴球不低于3米的持续时间是1-0.6=0.4(秒),故选:A.【点睛】此题考查了二次函数的实际应用,解一元二次方程,正确理解题中各字母的值,代入求出函数解析式解决问题是解题的关键.2、A【解析】【分析】根据待定系数法确定函数解析式,再根据函数的图象与性质求解即可.【详解】解:把(-1,1),(1,-3),(-2,-3)代入,得 解得, ∴二次函数式为: ∴二次函数的图像开口向下,故①正确;∴对称轴为直线 ∴当时,的增大而减小,故②正确;时,二次函数的最大值是,故③错误;是二次函数图像与轴交点的横坐标,则,故④错误∴正确的是①②故答案为①②【点睛】本题考查二次函数的性质、二次函数的最值、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.3、B【解析】【分析】利用表中数据可知当x=1.3和x=1.2时,代数式ax2bxc的值一个大于2,一个小于2,从而判断当1.2<x<1.3时,代数式ax2bxc的值为2【详解】解:当x=1.3时,ax2bxc=2.29,x=1.2时,ax2bxc=0.84,∵0.84<2<2.29,∴方程解的范围为1.2<x<1.3,故选:B【点睛】本题考查估算一元二次方程的近似解,解题关键是观察函数值的变化情况.4、B【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】解:A、函数的对称轴在y轴右侧,则ab<0,而c>0,故abc<0,故A正确,不符合题意;B、函数的对称轴为:x=−=1,故2a+b=0,即,图象与x轴交于点A(−1,0),故当时,,即,故B错误,符合题意;C、图象与x轴交于点A(−1,0),其对称轴为直线x=1,则图象与x轴另外一个交点坐标为:(3,0),故当x=2时,y=4a+2bc>0,故C正确,不符合题意;D、图象与x轴另外一个交点坐标为:(3,0),即x=3时,y=9a+3bc=0,正确,不符合题意;故选:B.【点睛】本题考查的是二次函数图象与系数的关系,要求学生熟悉函数的基本性质,能熟练求解函数与坐标轴的交点及顶点的坐标等.5、C【解析】【分析】直接利用顶点式写出二次函数的顶点坐标即可得到正确的选项.【详解】解:抛物线的顶点坐标为故选:C.【点睛】本题考查了二次函数的性质,解题的关键是了解二次函数的顶点式,难度不大.6、C【解析】【分析】把点的坐标分别代入函数解析式可分别求得,再比较其大小即可.【详解】解:都在函数的图象上,故选:C.【点睛】本题主要考查二次函数图象上点的坐标特征,掌握函数图象上的点的坐标满足函数解析式是解题的关键.7、A【解析】【分析】直接利用抛物线y=﹣2(x﹣3)2﹣4,求得对称轴方程为:x=3.【详解】解:抛物线y=﹣2(x﹣3)2﹣4的对称轴方程为:直线x=3,故选:A.【点睛】本题考查了二次函数的性质与图象,解题的关键是掌握:二次函数的顶点式与对称轴的关系.8、B【解析】【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.【详解】解:将抛物线yx2先向右平移3个单位长度,得:y=(x﹣3)2再向上平移5个单位长度,得:y=(x﹣3)2+5,故选:B【点睛】本题考察了二次函数抛物线的平移问题,解题的关键是根据左加右减,上加下减的平移规律进行求解.9、A【解析】【分析】根据二次函数的平移性质得出a不发生变化,即可判断a=1.【详解】解:∵二次函数y=ax+b2+c的图形,经过平移后可与y=(x+3)2的图形完全叠合,a=1.故选:A【点睛】此题主要考查了二次函数的平移性质,根据已知得出a的值不变是解题关键.10、D【解析】【分析】由题意知平移后的函数关系式为,进行整理即可.【详解】解:由题意知平移后的函数关系式为:故选D.【点睛】本题考查了二次函数图象的平移.解题的关键在于牢记二次函数图象平移时上加下减,左加右减.二、填空题1、y=﹣x2﹣4(答案不唯一)【解析】【分析】根据二次函数的性质,二次项系数小于0时,函数图象的开口向下,再利用过点(0,﹣4)得出即可.【详解】解:∵抛物线开口向下且过点(0,﹣4),∴可以设顶点坐标为(0,﹣4),故解析式为:y=﹣x2﹣4(答案不唯一).故答案为:y=﹣x2﹣4(答案不唯一).【点睛】本题考查了二次函数图象的性质,是开放型题目,答案不唯一.2、4【解析】【分析】先确定两个函数的开口方向和对称轴,再得出符合条件的x的取值范围,从而得到m的最小值.【详解】解:函数y1=﹣(x﹣4)2+2开口向下,对称轴为直线x=4,函数y2=﹣(x﹣3)2+1开口向下,对称轴为直线x=3,当函数值都随着x的增大而减小,x≥4,即m的最小值为4,故答案为:4.【点睛】本题考查了二次函数的图像和性质,解题的关键是掌握二次函数的基本性质.3、y=-x2-2x+3【解析】【分析】根据图象与xy轴的交点坐标和对称轴,利用待定系数法求二次函数的解析式即可.【详解】解:设该二次函数的解析式为y=ax2+bx+ca≠0),由图象知:当x=1时,y=0,当x=0时,y=3,又对称轴为直线x=-1,,解得:∴该二次函数的解析式为y=-x2-2x+3,故答案为:y=-x2-2x+3.【点睛】本题考查二次函数的图象与性质、待定系数法求二次函数的解析式,熟练掌握待定系数法求二次函数的解析式是解答的关键.4、x=-5或x=0##【解析】【分析】根据图象求出方程ax2bx+4=0的解,再根据方程的特点得到x+1=-4或x+1=1,求出x的值即可.【详解】解:由图可知:二次函数yax2bx+4与x轴交于(-4,0)和(1,0),ax2bx+4=0的解为:x=-4或x=1,则在关于x的方程ax+1)2bx+1)=-4中,x+1=-4或x+1=1,解得:x=-5或x=0,即关于x的方程ax+1)2bx+1)=-4的解为x=-5或x=0,故答案为:x=-5或x=0.【点睛】本题考查的是抛物线与x轴的交点,能根据题意利用数形结合求出方程的解是解答此题的关键.5、①②④【解析】【分析】分别根据过AB两点的函数是一次函数、二次函数时,相应的函数的性质进行判断即可.【详解】解:①过两点的直线的关系式为y=kx+b,则解得所以直线的关系式为y=x-1,直线y=x-1与直线y=x平行,因此①正确;②过两点的双曲线的关系式为,则所以双曲线的关系式为时, 也在此函数的图象上,故②正确;③若过两点的抛物线的关系式为y=ax2+bx+c当它经过原点时,则有 解得, 对称轴x=-∴当对称轴0<x=-时,抛物线与y轴的交点在正半轴,当-时,抛物线与y轴的交点在负半轴,因此③说法不正确;④当抛物线开口向上时,有a>0,而a+b=1,即b=-a+1,所以对称轴x=-=-=-因此函数图象对称轴在直线x左侧,故④正确,综上所述,正确的有①②④,故答案为:①②④.【点睛】本题考查一次函数、二次函数的图象和性质,待定系数法求函数的关系式,理解各种函数的图象和性质是正确判断的前提.三、解答题1、 (1)60或80(2)当销售单价x定70元/盒时,该专卖店每天获利最大,最大利润,900元(3)【解析】【分析】(1)利用利润等于每天的销售额减去总成本,列出方程,即可求解;(2)设该专卖店每天获利 元,根据题意,列出函数关系式,再根据二次函数的性质,即可求解;(3)设该店每天扣除捐出后的利润为 元,每天销售量为 盒,则每盒的销售单价为元/盒 ,每盒的利润为 元,根据题意列出关于的函数关系式,再根据二次函数的性质,即可求解.(1)解:根据题意得:解得:答:若该专卖店某天获利800元,销售单价为60或80元/盒;(2)解:设该专卖店每天获利 元,根据题意得:∴当销售单价x定70元/盒时,该专卖店每天获利最大,最大利润,900元;(3)解:设该店每天扣除捐出后的利润为 元,每天销售量为 盒,则每盒的销售单价为元/盒 ,每盒的利润为 元,根据题意得:∴该图象开口向下,对称轴为:根据题意得:当 时, 的减小而增大, ,解得:m的取值范围为【点睛】本题主要考查了一元二次方程的应用,二次函数的应用,明确题意,准确得到等量关系是解题的关键.2、【解析】【分析】根据抛物线与轴有交点转化为当时,方程有两个实数根,根据一元二次方程根的判别式大于或等于0,解不等式求解即可.【详解】∵抛物线x轴有交点,∴方程有两个实数根.解得.【点睛】本题考查了抛物线与轴交点问题,转化为一元二次方程根的判别式是解题的关键.一元二次方程 (为常数)的根的判别式,理解根的判别式对应的根的三种情况是解题的关键.当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根.3、 (1)(2)点的坐标为(3)【解析】【分析】(1)先求出的两根,可得点的坐标为,点的坐标为.从而得到的坐标为.再由.可得的坐标为.然后设抛物线对应的二次函数的解析式为.把点代入,即可求解;(2)根据题意可设点的坐标为,则有.再由点在抛物线上,可得.从而得到,即可求解;(3)由(2)知:,而,可得到,然后过点A.根据三角形的面积,可得.再由,可得,即可求解.(1)解:如图,过点轴于,则的中点.解方程得:,则点的坐标为,点的坐标为的坐标为又因为的坐标为设抛物线对应的二次函数的解析式为∵抛物线过点,则,解得:故抛物线对应的二次函数的解析式为(2)又∵设点的坐标为,则有∵点在抛物线上,化简得:解得:(舍去).故点的坐标为(3)由(2)知:,而过点A即此时的最大值为【点睛】本题主要考查了二次函数与三角形的综合题,等腰三角形的性质,熟练掌握二次函数的图象和性质等腰三角形的性质是解题的关键.4、 (1)(2)不在,见解析(3)y1y2,见解析【解析】【分析】(1)根据已知条件设抛物线的解析式为顶点式,把点(1,3)的坐标代入所设的解析式中即可求得a,从而可求得函数解析式;(2)把点P的纵坐标代入抛物线的解析式中,得到关于x的二元一次方程,若方程有解,则点P在抛物线,否则不在抛物线上;(3)抛物线的对称轴为直线x=2,根据抛物线的增减性质即可比较大小.(1)设抛物线的解析式为把点(1,3)的坐标代入中,得a+4=3 即抛物线的解析式为(2)动点Px,5)不在抛物线上理由如下:中,当y=5时,得此方程无解故点P不在抛物线上;(3)y1y2理由如下:抛物线的对称轴为直线x=2∵二次项系数−1<0,且 ∴函数值随自变量的增大而增大y1y2【点睛】本题考查了待定系数法求二次函数的解析式,二次函数与一元二次方程的关系,二次函数的图象与性质等知识,熟练掌握这些知识是关键,属于二次函数的基础题目.5、 (1)对称轴x=2;交点坐标为(1,0)和(3,0)(2)10(3)4【解析】【分析】(1)解析式化成顶点式即可求得对称轴,令y=0,得到关于x的方程,解方程即可求得抛物线与x轴的交点坐标;(2)构建方程求出a的值,再求出△OPQ的面积即可解决问题;(3)当tx1t+1,x2≥5时,均满足y1y2,推出当抛物线开口向下,点P在点Q左边或重合且在点Q关于对称轴对称点的右边时,满足条件,可得t+1≤5且t≥﹣1,由此即可解决问题.(1)解:∵yax2﹣4ax+3aax﹣2)2a∴对称轴x=2;y=0,则ax2﹣4ax+3a=0,解得x=1或3,∴抛物线与x轴的交点坐标为(1,0)和(3,0);(2)解:∵该二次函数的图象开口向下,且对称轴为直线x=2,∴当x=2时,y取到在1≤x≤4上的最大值为2,即P(2,2),∴4a﹣8a+3a=2,a=﹣2,y=﹣2x2+8x﹣6,∵当1≤x≤2时,yx的增大而增大,∴当x=1时,y取到在1≤x≤2上的最小值0.∵当2≤x≤4时,yx的增大而减小,∴当x=4时,y取到在2≤x≤4上的最小值﹣6.∴当1≤x≤4时,y的最小值为﹣6,即Q(4,﹣6).∴△OPQ的面积为4×(2+6)﹣2×2÷2﹣4×6÷2﹣(4﹣2)×(2+6)÷2=10;(3)解:∵当tx1t+1,x2≥5时,均满足y1y2∴当抛物线开口向下,点P在点Q左边或重合且在点Q关于对称轴对称点的右边时,满足条件,t+1≤5且t≥﹣1,∴﹣1≤t≤4,t的最大值为4.【点睛】本题考查二次函数的图象和性质,二次函数图象上点的坐标特征,函数的最值问题等知识,解题的关键是读懂题意、灵活运用所学知识解决问题. 

    相关试卷

    数学九年级下册第30章 二次函数综合与测试优秀同步测试题:

    这是一份数学九年级下册第30章 二次函数综合与测试优秀同步测试题,共29页。

    初中数学冀教版九年级下册第30章 二次函数综合与测试课后练习题:

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试课后练习题,共32页。试卷主要包含了对于抛物线下列说法正确的是,下列函数中,随的增大而减小的是等内容,欢迎下载使用。

    2020-2021学年第30章 二次函数综合与测试课后练习题:

    这是一份2020-2021学年第30章 二次函数综合与测试课后练习题,共32页。试卷主要包含了抛物线的顶点为等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map