2020-2021学年第30章 二次函数综合与测试课后练习题
展开
这是一份2020-2021学年第30章 二次函数综合与测试课后练习题,共32页。试卷主要包含了抛物线的顶点为等内容,欢迎下载使用。
九年级数学下册第三十章二次函数章节测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+4x+c有两个相异的不动点x1,x2,且x1<3<x2,则c的取值范围是( )
A.c<﹣6 B.c<﹣18 C.c<﹣8 D.c<﹣11
2、二次函数y=ax2﹣4ax+c(a>0)的图象过A(﹣2,y1),B(0,y2),C(3,y3),D(5,y4)四个点,下列说法一定正确的是( )
A.若y1y2>0,则y3y4>0 B.若y1y4>0,则y2y3>0
C.若y2y4<0,则y1y3<0 D.若y3y4<0,则y1y2<0
3、抛物线的对称轴是( )
A.直线 B.直线 C.直线 D.直线
4、小明以二次函数的图象为灵感为“2017北京房山国际葡萄酒大赛”设计了一款杯子,如图为杯子的设计稿,若,,则杯子的高为( )
A.14 B.11 C.6 D.3
5、二次函数的图象如图所示,那么下列说法正确的是( )
A. B.
C. D.
6、一次函数与二次函数在同一平面直角坐标系中的图象可能是( )
A. B.
C. D.
7、抛物线的顶点为( )
A. B. C. D.
8、已知二次函数,当时,x的取值范围是,且该二次函数图象经过点,则p的值不可能是( )
A.-2 B.-1 C.4 D.7
9、已知二次函数,当时,随的增大而减小,则的取值范围是( )
A. B. C. D.
10、已知二次项系数等于1的一个二次函数,其图象与x轴交于,两点,且过,两点.若,则ab的取值范围为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知抛物线经过点.若点在该抛物线上,且,则n的取值范围为______.
2、若抛物线与轴交于原点,则的值为 __.
3、如图,抛物线与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连接OQ.则线段OQ的最大值是______.
4、某农场拟建两间矩形饲养室,一面靠足够长的墙体,中间用一道围栏隔开,并在如图所示的两处各留宽的门,所有围栏的总长(不含门)为,若要使得建成的饲养室面积最大,则利用墙体的长度为______.
5、已知抛物线,将此二次函数解析式用配方法化成的形式得__________,此抛物线经过两点A(-2,y1)和,则与的大小关系是_____________.
三、解答题(5小题,每小题10分,共计50分)
1、已知二次函数的图象经过点,对称轴是经过且平行于轴的直线.
(1)求,的值,
(2)如图,一次函数的图象经过点,与轴相交于点,与二次函数的图象相交于另一点,若点与点关于抛物线对称轴对称,求一次函数的表达式.
(3)根据函数图象直接写出时,的取值范围.
2、已知抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴的交点为C(0,3),其对称轴是直线x=1,点P是抛物线上第一象限内的点,过点P作PQ⊥x轴,垂足为Q,交BC于点D,且点P的横坐标为m.
(1)求这条抛物线对应的函数表达式;
(2)如图1,PE⊥BC,垂足为E,当DE=BD时,求m的值;
(3)如图2,连接AP,交BC于点H,则的最大值是 .
3、在平面直角坐标系中,抛物线y=x2﹣4mx+m(m≠0)与y交于点P,将抛物线y=x2﹣4mx+m(m≠0)上点P及点P左边的部分图象沿y轴平移,使点P平移后的对应点Q落在(0,﹣m)处,将平移后的图象与原图象剩余部分合称为图象G
(1)当m=1时,
①求图象G与x轴正半轴的交点坐标;
②图象G对应的函数值y随x增大而减小时x的取值范围为 ;
(2)当图象G的最低点到x轴的距离为时,求m的值.
(3)当过点Q且与y轴垂直的直线与图象G有三个交点时,设另外两个交点为A、B.当Q、A、B三点中,有一点到另外两点的距离之比是1:1时,直接写出线段AB的长度.
4、如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象与直线AB交于A、B两点,A(1,-),B(-2,0),其中点A是抛物线y=ax2+bx+c的顶点,交y轴于点D.
(1)求二次函数解析式;
(2)如图1,点P是第四象限抛物线上一点,且满足BP∥AD,抛物线交x轴于点C.M为直线AB下方抛物线上一点,过点M作PC的平行线交BP于点N,求MN最大值;
(3)如图2,点Q是抛物线第三象限上一点(不与点B、D重合),连接BQ,以BQ为边作正方形BEFQ,当顶点E或F恰好落在抛物线对称轴上时,直接写出对应的Q点的坐标.
5、生态水果是指在保护、改善农业生态环境的前提下,遵循生态学、生态经济学规律,运用现代科学技术,营养的、健康的水果.青岛市扶贫工作小组对李沧、胶州、即墨等多地果农进行精准投资建设,帮助果农将一种有机生态水果拓宽了市场,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了.批发销售总额比去年增加了20%
(1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元?
(2)今年某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180千克.设水果店一天的利润为w元,当每千克的平均销售价为多少元时该水果店一天的利润最大(利润计算时,其它费用忽略不计,并且售价为整数)
-参考答案-
一、单选题
1、B
【解析】
【分析】
由题意得不动点的横纵坐标相等,即在直线y=x上,故二次函数与直线y=x有两个交点,且横坐标满足x1<3<x2,可以理解为x=3时,一次函数的值大于二次函数的值.
【详解】
解:由题意得:不动点在一次函数y=x图象上,
∴一次函数y=x与二次函数的图象有两个不同的交点,
∵两个不动点x1,x2满足x1<3<x2,
∴x=3时,一次函数的函数值大于二次函数的函数值,
∴3>32+4×3+c,
∴c<-18.
故选:B.
【点睛】
本题以新定义为背景,考查了二次函数图象和一次函数图象的交点与系数间的关系,本题亦可以转化为方程的解来解题.
2、C
【解析】
【分析】
根据函数表达式得出函数的开口方向和对称轴,从而得到y3<y2<y4<y1,再结合题目一一判断即可.
【详解】
解:由函数表达式可知:函数图像开口向上,对称轴为直线x==2,
∵-2<0<2<3<5,
∴y3<y2<y4<y1,
若y1y2>0,则y3y4>0或y3y4<0,选项A不符合题意,
若y1y4>0,则y2y3>0或y2y3<0,选项B不符合题意,
若y2y4<0,则y1y3<0,选项C符合题意,
若y3y4<0,则y1y2<0或y1y2>0,选项D不符合题意,
故选:C.
【点睛】
本题考查二次函数的性质,二次函数图象上的点的坐标特征,解题的关键是学会利用图象法解决问题,属于中考常考题型.
3、B
【解析】
【分析】
由抛物线解析式的顶点式即可求得抛物线的对称轴.
【详解】
抛物线的对称轴是直线,
故选:B.
【点睛】
本题考查了抛物线的图象与性质,当抛物线的解析式为时,对称轴为直线;当抛物线的解析式为时,对称轴为直线x=h.
4、B
【解析】
【分析】
首先由y=2x2-4x+8求出D点的坐标为(1,6),然后根据AB=4,可知B点的横坐标为x=3,代入y=2x2-4x+8,得到y=14,所以CD=14-6=8,又DE=3,所以可知杯子高度.
【详解】
解:,
抛物线顶点的坐标为,
,
点的横坐标为,
把代入,得到,
,
.
故选:B.
【点睛】
本题主要考查了二次函数的应用,求出顶点D和点B的坐标是解决问题的关键.
5、D
【解析】
【分析】
根据二次函数图象性质解题.
【详解】
解:A.由图可知,二次函数图象的对称轴为:x=1,即,故A不符合题意;
B.二次函数图象与y轴交于负半轴,即c
相关试卷
这是一份数学冀教版第30章 二次函数综合与测试课后练习题,共27页。试卷主要包含了二次函数y=a+bx+c,抛物线的顶点坐标为等内容,欢迎下载使用。
这是一份冀教版九年级下册第30章 二次函数综合与测试一课一练,共27页。
这是一份数学九年级下册第30章 二次函数综合与测试同步练习题,共33页。试卷主要包含了若点A等内容,欢迎下载使用。