开学活动
搜索
    上传资料 赚现金

    2022年最新精品解析冀教版九年级数学下册第三十章二次函数章节训练试卷(精选)

    2022年最新精品解析冀教版九年级数学下册第三十章二次函数章节训练试卷(精选)第1页
    2022年最新精品解析冀教版九年级数学下册第三十章二次函数章节训练试卷(精选)第2页
    2022年最新精品解析冀教版九年级数学下册第三十章二次函数章节训练试卷(精选)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版九年级下册第30章 二次函数综合与测试同步测试题

    展开

    这是一份冀教版九年级下册第30章 二次函数综合与测试同步测试题,共28页。试卷主要包含了对于二次函数,下列说法正确的是,二次函数y=a+bx+c,二次函数的最大值是等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、抛物线的图象开口最大的是(       A. B. C. D.无法确定2、下列实际问题中的yx之间的函数表达式是二次函数的是(       A.正方体集装箱的体积,棱长xmB.小莉驾车以的速度从南京出发到上海,行驶xh,距上海ykmC.妈妈买烤鸭花费86元,烤鸭的重量y斤,单价为x元/斤D.高为14m的圆柱形储油罐的体积,底面圆半径xm3、若函数,则当函数y=15时,自变量的值是(     A. B.5 C.或5 D.5或4、对于二次函数,下列说法正确的是(       A.若,则yx的增大而增大 B.函数图象的顶点坐标是C.当时,函数有最大值-4 D.函数图象与x轴有两个交点5、二次函数ya+bx+ca≠0)的图象如图所示,下列结论:①﹣4ac>0;②abc<0;③4a+b=0,④4a-2b+c>0;其中正确结论的个数是(  )A.4 B.3 C.2 D.16、二次函数的最大值是(   A. B. C.1 D.27、如图,二次函数yax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论正确的是(       A.ac>0 B.a+b=1 C.4acb2≠4a D.a+b+c>08、将函数的图像向上平移1个单位,向左平移2个单位,则所得函数表达式是(       A. B.C. D.9、下列函数中,的增大而减小的函数是(       A. B. C. D.10、抛物线的顶点坐标为(  )A.(﹣4,﹣5) B.(﹣4,5) C.(4,﹣5) D.(4,5)第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、最大值与最小值之和为_________.2、已知抛物线,将其图象先向右平移1个单位长度,再向上平移2个单位长度,则得到的抛物线解析式为________.3、用“描点法”画二次函数的图象时,列了如下表格:……012…………6.5……时,二次函数的函数值______4、已知抛物线轴相交于两点.若线段的长不小于2,则代数式的最小值为_______.5、如果(2,y1)(3,y2)是抛物线y=(x+1)2上两点,那么y1_____y2.(填“>”或“<”)三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系中,二次函数yax2+bx+c的图象经过点A(0,6)和B(﹣2,﹣2).(1)求c的值,并用含a的代数式表示b(2)当a时.①求此函数的解析式,并写出当﹣4≤x≤2时,y的最大值和最小值;②如图,抛物线yax2+bx+cx轴的左侧交点为C,作直线ACD为直线AC下方抛物线上一动点,与AC交于点F,作DMAC于点M.是否存在点D使△DMF的周长最大?若存在,请求出D点的坐标;若不存在,请说明理由.2、已知直线y1kx+1(k>0)与抛物线y2x2(1)当﹣4≤x≤3时,函数y1y2的最大值相等,求k的值;(2)如图①,直线y1kx+1与抛物线y2x2交于AB两点,与y轴交于F点,点C与点F关于原点对称,求证:SACFSBCFACBC(3)将抛物线y2x2先向上平移1个单位,再沿直线y1kx+1的方向移动,使向右平行移动的距离为t个单位,如图②所示,直线y1kx+1分别交x轴,y轴于EF两点,交新抛物线于MN两点,D是新抛物线与y轴的交点,当△OEF∽△DNF时,试探究tk的关系.3、己知二次函数(1)若此二次函数图象的对称轴为,求它的解析式;(2)当时,yx增大而减小,求k的取值范围.4、已知抛物线经过,且顶点在y轴上.(1)求抛物线解析式;(2)直线与抛物线交于AB两点.①点P在抛物线上,当,且△ABP为等腰直角三角形时,求c的值;②设直线x轴于点,线段AB的垂直平分线交y轴于点N,当时,求点N纵坐标n的取值范围.5、在平面直角坐标系xOy中,已知抛物线:yax2-2ax+4(a>0).(1)抛物线的对称轴为x    ;抛物线与y轴的交点坐标为    (2)若抛物线的顶点恰好在x轴上,写出抛物线的顶点坐标,并求它的解析式;(3)若Am-1,y1),Bmy2),Cm+2,y3)为抛物线上三点,且总有y1y3y2,结合图象,求m的取值范围. -参考答案-一、单选题1、A【解析】【分析】先令x=1,求出函数值,然后再比较二次项系数的绝对值的大小即可解答.【详解】解:当x=1时,三条抛物线的对应点是(1,)(1,-3),(1,1),∵||<|1|<|-3|,∴抛物线开口最大.故选A.【点睛】本题主要考查了二次函数图象的性质,掌握二次函数解析式的二次项系数的绝对值越小,函数图象的开口越大.2、D【解析】【分析】根据题意,列出关系式,即可判断是否是二次函数.【详解】A.由题得:,不是二次函数,故此选项不符合题意;B.由题得:,不是二次函数,故此选项不符合题意;C.由题得:,不是二次函数,故此选项不符合题意;D.由题得:,是二次函数,故此选项符合题意.故选:D.【点睛】本题考查二次函数的定义,形如的形式为二次函数,掌握二次函数的定义是解题的关键.3、D【解析】【分析】根据题意,利用分类讨论的方法可以求得当函数y=15时,自变量x的值.【详解】解:当x<3时,令2x2-3=15,解得x=-3;x≥3时,令3x=15,解得x=5;由上可得,x的值是-3或5,故选:D.【点睛】本题考查了二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用分类讨论的方法解答.4、A【解析】【分析】先将二次函数的解析式化为顶点式,再逐项判断即可求解.【详解】解:∵,且∴二次函数图象开口向下,∴A、若,则yx的增大而增大,故本选项正确,符合题意;B、函数图象的顶点坐标是,故本选项错误,不符合题意;C、当时,函数有最大值-2,故本选项错误,不符合题意;∴D、函数图象与x轴没有交点,故本选项错误,不符合题意;故选:A【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.5、B【解析】【分析】看抛物线与x轴交点个数,判定判别式的符号;根据抛物线开口方向,对称轴与x轴的交点位置,与y轴的交点位置,确定abc的符号;根据对称轴,确定ab之间的关系;当x= -2时,利用图像,观察直线x=-2与抛物线的交点位置,判定函数值的正负即可.【详解】∵抛物线与x轴有两个不同的交点,﹣4ac>0;故①正确;∵抛物线开口向下,与y轴交于正半轴,>0,a<0,b>0, c>0,abc<0;故②正确;∴4a+b=0,故③正确;x= -2时,y=4a-2b+c根据函数的增减性,得4a-2b+c<0;故④错误.故选B.【点睛】本题考查了抛物线的图像与各项系数的关系,抛物线与x轴的交点,对称性,增减性,熟练掌握抛物线的性质是解题的关键.6、D【解析】【分析】由图象的性质可知在直线处取得最大值,将代入解析式计算求解即可.【详解】解:由图象的性质可知,在直线处取得最大值∴将代入中得∴最大值为2故答案为:2.【点睛】本题考查了二次函数的最值.解题的关键在于掌握二次函数的图象与性质.7、D【解析】【分析】由抛物线开口方向及抛物线与轴交点位置,即可得出,进而判断结论A;由抛物线顶点的横坐标可得出,进而判断结论B;由抛物线顶点的纵坐标可得出,进而判断结论C;由,进而判断结论D.由此即可得出结论.【详解】解:A、抛物线开口向下,且与轴正半轴相交,,结论A错误,不符合题意;B、抛物线顶点坐标为,即,结论B错误,不符合题意;C、抛物线顶点坐标为,结论C错误,不符合题意;D、,结论D正确,符合题意.故选:D.【点睛】本题考查了二次函数图象与系数的关系以及二次函数的性质,解题的关键是观察函数图象,逐一分析四个选项的正误.8、B【解析】【分析】由二次函数图象平移的规律即可求得平移后的解析式,再选择即可.【详解】解:将抛物线先向上平移1个单位,则函数解析式变为 再将向左平移2个单位,则函数解析式变为故选:B.【点睛】本题主要考查二次函数的图象变换,掌握平移的规律是解题的关键,即“左加右减,上加下减”.9、B【解析】【分析】根据一次函数,反比例函数,二次函数,正比例函数的性质逐项分析即可.【详解】A. 的增大而增大,故A选项不符合题意. B. 的图像位于第三象限,的增大而减小,故B选项符合题意;C. ,对称轴为轴,在对称轴的左边,的增大而增大,在对称轴的右边,的增大而减小,故C选项不符合题意;D. 的增大而增大,故D选项不符合题意;故选B.【点睛】本题考查了一次函数,反比例函数,二次函数,正比例函数的性质,掌握以上性质是解题的关键.10、A【解析】【分析】根据抛物线的顶点坐标为 ,即可求解.【详解】解:抛物线的顶点坐标为故选:A【点睛】本题主要考查了二次函数的图象和性质,熟练掌握抛物线的顶点坐标为是解题的关键.二、填空题1、##【解析】【分析】将已知式子化成,分两种情况,再利用一元二次方程根的判别式可得一个关于的不等式,然后利用二次函数的性质求出的取值范围,从而可得的最大值与最小值,由此即可得出答案.【详解】解:由得:①当时,②当时,则关于的方程根的判别式大于或等于0,整理得:解方程得:则对于二次函数,当时,的取值范围为,且综上,的取值范围为所以的最大值为3,最小值为所以的最大值与最小值之和为故答案为:【点睛】本题考查了一元二次方程根的判别式、二次函数的性质等知识,将求最值问题转化为一元二次方程问题是解题关键.2、【解析】【分析】根据抛物线的平移规律:上加下减,左加右减解答即可.【详解】解:∵抛物线的顶点坐标为(0,2),其图象先向右平移1个单位长度,再向上平移2个单位长度,得到的抛物线解析式为故答案为:【点睛】本题考查了抛物线的平移规律.关键是确定平移前后抛物线的顶点坐标,寻找平移规律.3、-4【解析】【分析】由表格得出抛物线的对称轴,根据二次函数的对称性解答可得.【详解】解:由表格可知当x=0和x=2时,y=-2.5,∴抛物线的对称轴为x=1,x=3和x=-1时的函数值相等,为-4,故答案为:-4.本题主要考查了二次函数图象上点的坐标特征,根据表格得出抛物线的对称轴是解题的关键.4、-1【解析】【分析】将抛物线解析式配方,求出顶点坐标为(1,-2)在第四象限,再根据抛物线与x轴有两个交点可得,设为A,B两点的横坐标,然后根据已知,求出的取值范围,再设,配方代入求解即可.【详解】解:== ∴抛物线顶点坐标为(1,-2),在第四象限,又抛物线轴相交于A两点.∴抛物线开口向上,即 AB两点的横坐标, ∵线段的长不小于2, 解得, 时,有最小值,最小值为:故答案为:-1【点睛】本题主要考查发二次函数的图象与性质,熟记完全平方公式和根与系数的关系是解题的关键.5、<【解析】【分析】根据二次函数的性质得到抛物线y=(x+1)2的开口向上,对称轴为直线x=﹣1,则在对称轴右侧,yx的增大而增大.【详解】解:∵y=(x+1)2a=1>0,∴抛物线开口向上,∵抛物线y=(x+1)2对称轴为直线x=﹣1,∵﹣1<2<3,y1y2故答案为<.【点睛】本题考查了的性质,求得对称轴是解题的关键.三、解答题1、 (1)c=6;b=2a+4(2)①最小值为−,最大值为20;②D(−3,−).【解析】【分析】(1)分别把 A(0,6)和B(-2,-2)代入解析式,可得cb的值.(2)①当a时,此函数表达式为yx2+x+6,图象开口向上,由顶点坐标公式可知顶点坐标,根据二次函数的性质,当在顶点时函数值最小观察图象结合增减性,当x=2时,y有最大值.②令y=0,得C的坐标,设直线AC的解析式为y=kx+m,把A(0,6),C(-6,0)代入可得直线AC解析式,设D(xx2+x+6)则Fxx+6),得FD的值,设FDM的周长为l,则lDF+DM+MF,当FD最大时,周长最大,根据二次函数的性质可得最大值.(1)把(0,6)代入y=ax2+bx+cc=6.把(-2,-2)代入y=ax2+bx+6,得4a-2b+6=-2,b=2a+4.(2)①当a时,,且c=6∴函数表达式为yx2+x+6=,图象开口向上.∴顶点坐标为∵-4≤x≤2,∴当x=−时,y的最小值为−观察图象结合增减性,当x=2时,y有最大值,x=2代入yx2+x+6,y的最大值为20.②∵yx2+x+6,y=0,则x=-6或x=−∵点C在左侧,C(-6,0)设直线AC的解析式为y=kx+mA(0,6),C(-6,0)代入y=kx+m,得 解得k=1,m=6,y=x+6D(xx2+x+6)则Fxx+6)FDx+6−(x2+x+6)=−x2xOA=OC=6,∠AOC=90°,∴∠COA=90°,DFAO∴∠DFM=∠CAO=45°,DMFMFDFDM的周长为llDF+DM+MFFD最大时,周长最大,又∵又∵−<0且-6<x<0,x=-3时,FD有最大值,即此刻FDM周长最大.x=-3代入yx2+x+6,y=−D(−3,−).【点睛】本题考查二次函数的应用,解本题要熟练掌握二次函数的性质,求二次函数的解析式、待定系数法,数形结合是解题关键.2、 (1)(2)证明见解析(3)【解析】【分析】(1)根据函数图象的性质可知,当时,,有,求解即可;(2)如图,分别过点交点分别为,设两点横坐标分别为,由题意知:;有,故可证(3)平移后的二次函数解析式为,与y轴的交点坐标为可知有相同的纵坐标,可得,解得,知点横纵标,在点一次函数与二次函数相交,有相同的纵坐标,可得,进而可得的关系.(1)解:∵∴根据函数图象的性质可知,当时,解得(2)证明:如图,分别过点交点分别为两点横坐标分别为由题意知:(3)解:由题意知,平移后的二次函数解析式为,与y轴的交点坐标为有相同的纵坐标解得故可知点横纵标∵在点一次函数与二次函数相交,有相同的纵坐标解得【点睛】本题考查了一次函数与二次函数的综合,相似三角形等知识.解题的关键在于灵活运用知识求解.3、 (1)y= x 2−2x−3(2)【解析】【分析】(1)直接根据二次函数对称轴的概念可得答案;(2)根据二次函数的性质可得问题的答案.(1)解:由题意,得:a=1,b=−kc= k−5;∴对称轴x=解得:k=2,∴二次函数解析式y= x 2−2x−3;(2)解:二次函数a=1>0,∴其图象开口向上,时,yx 的增大而减小,∴对称轴位于x=1的右侧或对称轴为直线x=1,解得:.【点睛】此题考查的是二次函数的图象与系数的关系,掌握对称轴的概念、二次函数的图象的性质是解决此题关键.4、 (1)(2)①c的值为-1,②【解析】【分析】(1)根据抛物线经过,且顶点在y轴上,待定系数法求解析式即可;(2)①根据题意作出图形,根据等腰直角三角形的性质可得,根据在抛物线上,代入求解即可,根据图形取舍即可;②设.把代入中,得,根与系数的关系可得由勾股定理得,根据垂直平分线的性质可得,化简可得,进而可得当时,nk的增大而减小,由可得,进而求得的取值范围(1)∵抛物线经过,且顶点在y轴上,,解得∴抛物线解析式为.(2)①依题意得:当时,轴,与∠PBA都不可能为90°,∴只能是,∴点PAB的对称轴(y轴)上,∴点P为抛物线的顶点,即不妨设点A在点B的左侧,直线y轴交于点C∴点代入中,得:解得:(不合题意,舍去).c的值为-1.②设代入中,得,由根与系数的关系可得由勾股定理得∵点NAB的垂直平分线上,化简得∵直线x轴相交,∴点AB不关于y轴对称,,即.代入,得.由反比例函数的性质,可知:当时,在二次函数中,,对称轴为直线∴当时,nk的增大而减小,.【点睛】本题考查了二次函数、一次函数图象与性质,反比例函数的性质,一元二次方程根与系数的关系,等腰三角形的性质,待定系数法求解析式,数形结合是解题的关键.5、 (1)1,(0,4)(2)顶点坐标为(1,0),y=4x2-8x+4(3)【解析】【分析】(1)根据二次函数对称轴公式,以及与y轴的交点坐标公式;(2)根据二次函数与x轴交点公式,以及待定系数法求解析式;(3)先求对称点坐标根据函数的增减性解决本题.(1)解:x=0时,yax2-2ax+4=4,所以抛物线的对称轴是直线x=1,抛物线与y轴的交点坐标是(0,4),故答案为:1,(0,4).(2)解:∵抛物线的顶点恰好在x轴上,∴抛物线的顶点坐标为(1,0),把(1,0)代入yax2-2ax+4得:0=a×12-2a×1+4,解得:a=4,∴抛物线的解析式为y=4x2-8x+4.(3)解:Am-1,y1)关于对称轴x=1的对称点为A′(3-my1),Bmy2)关于对称轴x=1的对称点为B′(2-my2),若要y1y3y2,则3-mm+2>2-m,解得:【点睛】本题考查二次函数图像求对称轴公式,以及与x轴,y轴的交点公式,以及函数的增减性,掌握数形结合的思想是解决本题的关键. 

    相关试卷

    数学九年级下册第30章 二次函数综合与测试优秀同步测试题:

    这是一份数学九年级下册第30章 二次函数综合与测试优秀同步测试题,共29页。

    初中冀教版第30章 二次函数综合与测试练习题:

    这是一份初中冀教版第30章 二次函数综合与测试练习题,共32页。试卷主要包含了抛物线的对称轴是等内容,欢迎下载使用。

    2020-2021学年第30章 二次函数综合与测试课后练习题:

    这是一份2020-2021学年第30章 二次函数综合与测试课后练习题,共32页。试卷主要包含了抛物线的顶点为等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map