搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新精品解析冀教版九年级数学下册第三十章二次函数章节测试试题(含解析)

    2022年最新精品解析冀教版九年级数学下册第三十章二次函数章节测试试题(含解析)第1页
    2022年最新精品解析冀教版九年级数学下册第三十章二次函数章节测试试题(含解析)第2页
    2022年最新精品解析冀教版九年级数学下册第三十章二次函数章节测试试题(含解析)第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第30章 二次函数综合与测试课后练习题

    展开

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试课后练习题,共32页。试卷主要包含了对于抛物线下列说法正确的是,下列函数中,随的增大而减小的是等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数章节测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知点、在二次函数的图象上,当,时,.若对于任意实数、都有,则的范围是( ).
    A. B. C.或 D.
    2、将抛物线y=x2先向右平移3个单位长度,再向上平移5个单位长度,所得抛物线的解析式为(  )
    A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+3
    3、已知二次函数的图象如图所示,并且关于x的一元二次方程有两个不相等的实数根,下列结论:①;②;③;④.其中正确结论的个数有( )

    A.1个 B.2个 C.3个 D.4个
    4、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )

    A.米 B.10米 C.米 D.12米
    5、对于抛物线下列说法正确的是( )
    A.开口向下 B.其最大值为-2 C.顶点坐标 D.与x轴有交点
    6、下列函数中,随的增大而减小的是( )
    A. B.
    C. D.
    7、将函数的图像向上平移1个单位,向左平移2个单位,则所得函数表达式是( )
    A. B.
    C. D.
    8、已知二次函数的图象如图所示,对称轴为直线,下列结论中正确的是( )

    A. B. C. D.
    9、二次函数的图象如图所示,则下列结论正确的是( )

    A.,, B.,, C.,, D.,,
    10、已知二次函数y=ax2-2ax-1(a是常数,a≠0),则下列命题中正确的是( )
    A.若a=1,函数图象经过点(-1,1) B.若a=-2,函数图象与x轴交于两点
    C.若a<0,函数图象的顶点在x轴下方 D.若a>0且x≥1,则y随x增大而减小
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,函数的图象过点和,下列判断:
    ①;
    ②;
    ③;
    ④和处的函数值相等.
    其中正确的是__(只填序号).

    2、定义:在平面直角坐标系中,若点的横、纵坐标都为整数,则把这样的点叫做“整点”.如:A(1,0),B(﹣3,2)都是“整点”,抛物线y=ax2﹣2ax+a+2(a<0)与x轴交于P,Q两点,若该抛物线在P,Q之间的部分与线段PQ所围的区域(不包括边界)恰有3个整点,则a的取值范围是_____.
    3、如果抛物线的顶点在轴上,那么的值是_________.
    4、已知二次函数,当y随x的增大而增大时,自变量x的取值范围是______.
    5、最大值与最小值之和为_________.
    三、解答题(5小题,每小题10分,共计50分)
    1、已知抛物线经过点,与y轴交于点C,连接.

    (1)求抛物线的解析式;
    (2)在直线上方抛物线上取一点P,过点P作轴交边于点Q,求的最大值;
    (3)在直线上方抛物线上取一点D,连接.交于点F,当时,求点D的坐标.
    2、已知抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴的交点为C(0,3),其对称轴是直线x=1,点P是抛物线上第一象限内的点,过点P作PQ⊥x轴,垂足为Q,交BC于点D,且点P的横坐标为m.

    (1)求这条抛物线对应的函数表达式;
    (2)如图1,PE⊥BC,垂足为E,当DE=BD时,求m的值;
    (3)如图2,连接AP,交BC于点H,则的最大值是 .
    3、 “互联网+”时代,网上购物备受消费者青睐,某网店专售一款电子玩具,其成本为每件100元,当售价为每件160元时,每月可销售200件.为了吸引更多买家,该网店采取降价措施,据市场调查反映:销售单价每降低1元,则每月可多销售5件,设每件电子玩具的售价为x元(x为正整数),每月销售量为y件.
    (1)直接写出y与x之间的函数关系式;
    (2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?
    (3)该网店店主决定每月从利润中捐出500元资助贫困学生,为了保证捐款后每月利润不低于11500元,且让消费者得到最大的实惠,该如何确定该电子玩具的价格?
    4、如图,抛物线y=ax2+bx﹣3经过A、B、C三点,点A(﹣3,0)、C(1,0),点B在y轴上.点P是直线AB下方的抛物线上一动点(不与A、B重合).

    (1)求此抛物线的解析式;
    (2)过点P作x轴的垂线,垂足为D,交直线AB于点E,动点P在什么位置时,PE最大,求出此时P点的坐标;
    (3)点Q是抛物线对称轴上一动点,是否存在点Q,使以点A、B、Q为顶点的三角形为直角三角形?若存在,请求出点Q坐标;若不存在,请说明理由.
    5、已知抛物线y=ax2+bx+5(a为常数,a≠0)交x轴于点A(-1,0)和点B(5,0),交y轴于点C.
    (1)求点C的坐标和抛物线的解析式;
    (2)若点P是抛物线上一点,且PB=PC,求点P的坐标;
    (3)点Q是抛物线的对称轴l上一点,当QA+QC最小时,求点Q的坐标.

    -参考答案-
    一、单选题
    1、A
    【解析】
    【分析】
    先根据二次函数的对称性求出b的值,再根据对于任意实数x1、x2都有y1+y2≥2,则二次函数y=x2-4x+n的最小值大于或等于1即可求解.
    【详解】
    解:∵当x1=1、x2=3时,y1=y2,
    ∴点A与点B为抛物线上的对称点,
    ∴,
    ∴b=-4;
    ∵对于任意实数x1、x2都有y1+y2≥2,
    ∴二次函数y=x2-4x+n的最小值大于或等于1,
    即,
    ∴c≥5.
    故选:A.
    【点睛】
    本题考察了二次函数的图象和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),其对称轴是直线:,顶点纵坐标是,抛物线上两个不同点P1(x1,y1),P2(x2,y2),若有y1=y2,则P1,P2两点是关于抛物线对称轴对称的点,且这时抛物线的对称轴是直线:.
    2、B
    【解析】
    【分析】
    根据二次函数图象左加右减,上加下减的平移规律进行求解.
    【详解】
    解:将抛物线y=x2先向右平移3个单位长度,得:y=(x﹣3)2;
    再向上平移5个单位长度,得:y=(x﹣3)2+5,
    故选:B.
    【点睛】
    本题考察了二次函数抛物线的平移问题,解题的关键是根据左加右减,上加下减的平移规律进行求解.
    3、B
    【解析】
    【分析】
    根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标等知识,逐个判断即可.
    【详解】
    解:抛物线与x轴有两个不同交点,因此b2-4ac>0,故①是错误的;
    由图象可知,当x=-1时,y=a-b+c>0,因此③是错误的;
    由开口方向可得,a>0,对称轴在y轴右侧,a、b异号,因此b-2
    因此④正确的,
    综上所述,正确的有2个,
    故选:B.
    【点睛】
    考查二次函数的图象和性质,掌握a、b、c的值决定抛物线的位置以及二次函数与一元二次方程的关系,是正确判断的前提.
    4、B
    【解析】
    【分析】
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出C、D点的横坐标即可求CD的长.
    【详解】

    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
    设抛物线的解析式为y=ax2,
    ∵O点到水面AB的距离为4米,
    ∴A、B点的纵坐标为-4,
    ∵水面AB宽为20米,
    ∴A(-10,-4),B(10,-4),
    将A代入y=ax2,
    -4=100a,
    ∴,
    ∴,
    ∵水位上升3米就达到警戒水位CD,
    ∴C点的纵坐标为-1,

    ∴x=±5,
    ∴CD=10,
    故选:B.
    【点睛】
    本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.
    5、D
    【解析】
    【分析】
    根据二次函数的性质对各选项分析判断即可得解.
    【详解】
    解:由y=(x-1)2-2,可知,a=1>0,则抛物线的开口向上,
    ∴A选项不正确;
    由抛物线,可知其最小值为-2,∴B选项不正确;
    由抛物线,可知其顶点坐标,∴C选项不正确;
    在抛物线中,△=b²-4ac=8>0,与与x轴有交点,∴D选项正确;
    故选:D.
    【点睛】
    本题考查了二次函数的性质,掌握开口方向,对称轴、顶点坐标以及与x轴的交点坐标的求法是解决问题的关键.
    6、C
    【解析】
    【分析】
    根据各个选项中的函数解析式,可以判断出y随x的增大如何变化,从而可以解答本题.
    【详解】
    解:A.在中,y随x的增大而增大,故选项A不符合题意;
    B.在中,y随x的增大与增大,不合题意;
    C.在中,当x>0时,y随x的增大而减小,符合题意;
    D.在,x>2时,y随x的增大而增大,故选项D不符合题意;
    故选:C.
    【点睛】
    本题考查了正比例函数的性质、二次函数的性质、反比例函数的性质,正确掌握相关函数增减性是解题关键.
    7、B
    【解析】
    【分析】
    由二次函数图象平移的规律即可求得平移后的解析式,再选择即可.
    【详解】
    解:将抛物线先向上平移1个单位,则函数解析式变为
    再将向左平移2个单位,则函数解析式变为,
    故选:B.
    【点睛】
    本题主要考查二次函数的图象变换,掌握平移的规律是解题的关键,即“左加右减,上加下减”.
    8、D
    【解析】
    【分析】
    由抛物线的开口方向判断与0的关系,由抛物线与轴的交点判断与0的关系,然后根据对称轴确定的符号,进而对所得结论进行判断.
    【详解】
    解:图象开口向上,与轴交于负半轴,对称轴在轴右侧,
    得到:,,,,
    A、,,,得,故选项错误,不符合题意;
    B、对称轴为直线,得,解得,故选项错误,不符合题意;
    C、当时,得,整理得:,故选项错误,不符合题意;
    D、根据图象知,抛物线与轴的交点横坐标,是一正一负,即,根据,整理得:,根据对称性可得出,则,故选项正确,符合题意;
    故选:D.
    【点睛】
    本题主要考查二次函数图象与二次函数系数之间的关系,解题的关键是掌握二次函数系数符号由抛物线开口方向、对称轴、抛物线与轴的交点、抛物线与轴交点的个数确定.
    9、D
    【解析】
    【分析】
    首先根据二次函数图象的开口方向确定,再根据对称轴在轴右,可确定与异号,然后再根据二次函数与轴的交点可以确定.
    【详解】
    解:抛物线开口向上,

    对称轴在轴右侧,
    与异号,

    抛物线与轴交于正半轴,

    故选:.
    【点睛】
    此题主要考查了二次函数图象与系数的关系,关键是掌握二次函数,
    ①二次项系数决定抛物线的开口方向和大小.
    当时,抛物线向上开口;当时,抛物线向下开口.
    ②一次项系数和二次项系数共同决定对称轴的位置.
    当与同号时(即,对称轴在轴左; 当与异号时(即,对称轴在轴右.(简称:左同右异)
    ③.常数项决定抛物线与轴交点. 抛物线与轴交于.
    10、B
    【解析】
    【分析】
    根据二次函数的图象与性质逐项分析即可.
    【详解】
    A、当a=1,x=-1时,,故函数图象经过点(-1,2),不经过点(-1,1),故命题错误;
    B、a=-2时,函数为,令y=0,即,由于,所以方程有两个不相等的实数根,从而函数图象与x轴有两个不同的交点,故命题正确;
    C、当a

    相关试卷

    冀教版九年级下册第30章 二次函数综合与测试一课一练:

    这是一份冀教版九年级下册第30章 二次函数综合与测试一课一练,共27页。

    2021学年第30章 二次函数综合与测试精练:

    这是一份2021学年第30章 二次函数综合与测试精练,共33页。试卷主要包含了同一直角坐标系中,函数和,对于二次函数,下列说法正确的是等内容,欢迎下载使用。

    数学九年级下册第30章 二次函数综合与测试课时训练:

    这是一份数学九年级下册第30章 二次函数综合与测试课时训练,共34页。试卷主要包含了若二次函数y=ax2+bx+c,二次函数图像的顶点坐标是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map