搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新冀教版九年级数学下册第三十章二次函数必考点解析练习题(无超纲)

    2022年最新冀教版九年级数学下册第三十章二次函数必考点解析练习题(无超纲)第1页
    2022年最新冀教版九年级数学下册第三十章二次函数必考点解析练习题(无超纲)第2页
    2022年最新冀教版九年级数学下册第三十章二次函数必考点解析练习题(无超纲)第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版九年级下册第30章 二次函数综合与测试同步达标检测题

    展开

    这是一份冀教版九年级下册第30章 二次函数综合与测试同步达标检测题,共24页。试卷主要包含了已知点,,都在函数的图象上,则等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列实际问题中的yx之间的函数表达式是二次函数的是(       A.正方体集装箱的体积,棱长xmB.小莉驾车以的速度从南京出发到上海,行驶xh,距上海ykmC.妈妈买烤鸭花费86元,烤鸭的重量y斤,单价为x元/斤D.高为14m的圆柱形储油罐的体积,底面圆半径xm2、抛物线y=4(2x﹣3)2+3的顶点坐标是(  )A.(,3) B.(4,3) C.(3,3) D.(﹣3,3)3、如图,二次函数的图象与x轴交于点AB两点,与y轴交于点C;对称轴为直线,点B的坐标为,则下列结论:①;②;③;④,其中正确的结论有(       )个.A.1个 B.2个 C.3个 D.4个4、已知点都在函数的图象上,则(       A. B. C. D.5、若将抛物线y=2x2﹣1向上平移2个单位,则所得抛物线对应的函数关系式为(  )A.y=2(x﹣2)2﹣1 B.y=2(x+2)2﹣1 C.y=2x2﹣3 D.y=2x2+16、在平面直角坐标系中,将抛物线yx2﹣2x+1先向左平移3个单位长度,再向下平移2个单位长度,经过两次平移后所得抛物线的顶点坐标是(  )A.(4,2) B.(﹣2,2) C.(4,﹣2) D.(﹣2,﹣2)7、已知二次函数的图象如图所示,并且关于x的一元二次方程有两个不相等的实数根,下列结论:①;②;③;④.其中正确结论的个数有(       A.1个 B.2个 C.3个 D.4个8、已知二次项系数等于1的一个二次函数,其图象与x轴交于两点,且过两点.若,则ab的取值范围为(       A. B. C. D.9、抛物线yx2+4x+5的顶点坐标是(  )A.25 B.21 C.(﹣25 D.(﹣2110、如图所示,一座抛物线形的拱桥在正常水位时,水面AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为(  )A.4 B.10米 C.4 D.12米第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、对于二次函数,其自变量与函数值的两组对应值如下表所示,根据二次函数图象的相关性质可知______,______x﹣1ccd 2、将二次函数y=﹣x2+2图象向下平移3个单位,得到的函数图象顶点坐标为_____.3、请写出一个开口向下且过点(0,﹣4)的抛物线表达式为 _________________.4、已知二次函数y&#xF02D;x2bx+3图象的对称轴为x=2,则b=________;顶点坐标是________.5、已知二次函数,当自变量x分别取1、4、5时,对应的函数值分别为,则的大小关系是________(用“<”号连接).三、解答题(5小题,每小题10分,共计50分)1、高邮双黄鸭蛋已入选全世界最值得品尝百种味道,某专卖店根据以往销售数据发现:高邮双黄鸭蛋每天销售数量y(盒)与销售单价x(元/盒)的关系满足一次函数,每盒高邮双黄鸭蛋各项成本合计为40元/盒.(1)若该专卖店某天获利800元,求销售单价x(元/盒)的值;(2)当销售单价x定为多少元/盒时,该专卖店每天获利最大?最大利润为多少?(3)若该专卖店决定每销售一盒就捐出元给当地学校作为贫困学生的助学金,当每天的销售量不低于25盒时,为了确保该店每天扣除捐出后的利润随着销售量的减小而增大,则m的取值范围为______.2、如图,已知抛物线x轴交于点B,与y轴交于点(1)求抛物线的表达式;(2)若M是抛物线上点AC之间(含点AC)的一个动点,直接写出点M的纵坐标的取值范围.(3)平移直线,设平移后的直线为l,记ly轴的交点为,若l上方的抛物线有唯一交点,求m的取值范围.3、已知二次函数的图像经过点(1,4)和点(2,3).(1)求这个二次函数的表达式;(2)求该二次函数图像的顶点坐标.(3)当x在什么范围内时,yx的增大而减小?4、已知,如图,直线分别与轴、轴交于点,抛物线经过点和点,其对称轴与直线交于点(1)求二次函数的表达式;(2)若抛物线(其中)与抛物线的对称轴交于点.与直线交于点,过点轴交抛物线的对称轴左侧部分于点①若点和点重合,求的值;②若点在点的下方,求的长(用含有的代数式表示);③在②的条件下,设的长度为个单位,的长度为个单位,若.直接写出的范围.5、如图,正比例函数y1=x与二次函数y2=x2-bx的图象相交于O(0,0),A(4,4)两点.(1)求 b 的值;(2)当 y1 y2 时,直接写出 x 的取值范围. -参考答案-一、单选题1、D【解析】【分析】根据题意,列出关系式,即可判断是否是二次函数.【详解】A.由题得:,不是二次函数,故此选项不符合题意;B.由题得:,不是二次函数,故此选项不符合题意;C.由题得:,不是二次函数,故此选项不符合题意;D.由题得:,是二次函数,故此选项符合题意.故选:D.【点睛】本题考查二次函数的定义,形如的形式为二次函数,掌握二次函数的定义是解题的关键.2、A【解析】【分析】根据顶点式的顶点坐标为求解即可【详解】解:抛物线的顶点坐标是故选A【点睛】本题考查了二次函数顶点式的顶点坐标为,掌握顶点式求顶点坐标是解题的关键.3、D【解析】【分析】根据二次函数的对称性,以及参数abc的意义即可求出答案.【详解】解:∵抛物线的对称轴为x=-1,所以B(1,0)关于直线x=-1的对称点为A(-3,0),AB=1-(-3)=4,故①正确;由图象可知:抛物线与x轴有两个交点, Δ=b2-4ac>0,故②正确;由图象可知:抛物线开口向上,a>0,由对称轴可知:−<0,b>0,故③正确;x=-1时,y=a-b+c<0,故④正确;所以,正确的结论有4个,故选:D.【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质.4、C【解析】【分析】把点的坐标分别代入函数解析式可分别求得,再比较其大小即可.【详解】解:都在函数的图象上,故选:C.【点睛】本题主要考查二次函数图象上点的坐标特征,掌握函数图象上的点的坐标满足函数解析式是解题的关键.5、D【解析】【分析】由题意知平移后的函数关系式为,进行整理即可.【详解】解:由题意知平移后的函数关系式为:故选D.【点睛】本题考查了二次函数图象的平移.解题的关键在于牢记二次函数图象平移时上加下减,左加右减.6、D【解析】【分析】求出抛物线yx2﹣2x+1的顶点坐标为 ,即可求解.【详解】解:∵∴抛物线yx2﹣2x+1的顶点坐标为∴将抛物线yx2﹣2x+1先向左平移3个单位长度,再向下平移2个单位长度,经过两次平移后所得抛物线的顶点坐标是故选:D【点睛】本题主要考查了二次函数图象的平移,熟练掌握二次函数图象平移法则“左加右减,上加下减”是解题的关键.7、B【解析】【分析】根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标等知识,逐个判断即可.【详解】解:抛物线与x轴有两个不同交点,因此b2-4ac>0,故①是错误的;由图象可知,当x=-1时,y=a-b+c>0,因此③是错误的;由开口方向可得,a>0,对称轴在y轴右侧,ab异号,因此b<0,与y轴交点在负半轴,因此c<0,所有abc>0,因此②正确的;由关于x的一元二次方程ax2+bx+c-m=0有两个不相等的实数根,就是当y=m时,对应抛物线上有两个不同的点,即(x1m),(x2m),由图象可知此时m>-2因此④正确的,综上所述,正确的有2个,故选:B【点睛】考查二次函数的图象和性质,掌握abc的值决定抛物线的位置以及二次函数与一元二次方程的关系,是正确判断的前提.8、D【解析】【分析】由题意可设抛物线为y=(x-m)(x-n),则,再利用二次函数的性质可得答案.【详解】解:由已知二次项系数等于1的一个二次函数,其图象与x轴交于两点(m,0),(n,0), 所以可设交点式y=(x-m)(x-n), 分别代入 ∵0<mn<3, ∴0<≤4 ,0<≤4 , mnab不能取16 , ∴0<ab<16 ,故选D【点睛】本题考查的是二次函数的图象与性质,根据二次函数的性质得到是解本题的关键.9、D【解析】【分析】利用顶点公式(﹣),进行解题.【详解】解:∵抛物线yx2+4x+5x=﹣=﹣=﹣2,y=1∴顶点为(﹣21故选:D【点睛】此题主要考查二次函数的顶点坐标,解题的关键是熟知二次函数的顶点公式为(﹣).10、B【解析】【分析】O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为yax²,由此可得A(﹣10,﹣4),B(10,﹣4),即可求函数解析式为y=﹣ x²,再将y=﹣1代入解析式,求出CD点的横坐标即可求CD的长.【详解】解:以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为yax2O点到水面AB的距离为4米,AB点的纵坐标为﹣4,∵水面AB宽为20米,A(﹣10,﹣4),B(10,﹣4),A代入yax2﹣4=100aa=﹣y=﹣x2∵水位上升3米就达到警戒水位CDC点的纵坐标为﹣1,∴﹣1=﹣x2x=±5,CD=10,故选:B.【点睛】本题考查二次函数在实际问题中的应用,找对位置建立坐标系再求解二次函数是关键.二、填空题1、     1     3【解析】【分析】根据二次函数的性质可知m=1,将d用含c的式子表示出来即可.【详解】解由二次函数的性质可得的对称轴为y轴,故由表可得m=1;∵二次函数的对称轴为y轴,d=c+3,3,故答案为:1,3.【点睛】此题考查二次函数的对称性,熟练掌握二次函数的性质是解题的关键.2、(0,-1)【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】解:将二次函数y=-x2+2图象向下平移3个单位,得到y=-x2+2-3=-x2-1,顶点坐标为(0,-1),故答案为:(0,-1).【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象几何变换的法则是解答此题的关键.3、y=﹣x2﹣4(答案不唯一)【解析】【分析】根据二次函数的性质,二次项系数小于0时,函数图象的开口向下,再利用过点(0,﹣4)得出即可.【详解】解:∵抛物线开口向下且过点(0,﹣4),∴可以设顶点坐标为(0,﹣4),故解析式为:y=﹣x2﹣4(答案不唯一).故答案为:y=﹣x2﹣4(答案不唯一).【点睛】本题考查了二次函数图象的性质,是开放型题目,答案不唯一.4、     4     (2,7)【解析】【分析】由对称轴公式即可求得b,把解析式化成顶点式即可求得顶点坐标.【详解】解:∵二次函数y&#xF02D;x2bx+3图象的对称轴为x=2,∴−=2,b=4,∴二次函数y=−x2+4x+3,y=−x2+4x+3=−(x−2)2+7,∴顶点坐标是(2,7),故答案为:4,(2,7).【点睛】本题考查了二次函数的图象和性质,熟知对称轴公式和二次函数解析式的三种表现形式是解题的关键.5、y1y2y3【解析】【分析】利用二次函数图象上点的坐标特征可分别求出y1y2y3的值,结合a>0,即可得出a+c<4a+c<9a+c,即y1y2y3【详解】解:当x=1时,y1=a(1-2)2+c=a+cx=4时,y2=a(4-2)2+c=4a+cx=5时,y3=a(5-2)2+c=9a+ca>0,a+c<4a+c<9a+cy1y2y3故答案为:y1y2y3【点睛】本题考查了二次函数图象上点的坐标特征,利用二次函数图象上点的坐标特征,分别求出y1y2y3的值是解题的关键.三、解答题1、 (1)60或80(2)当销售单价x定70元/盒时,该专卖店每天获利最大,最大利润,900元(3)【解析】【分析】(1)利用利润等于每天的销售额减去总成本,列出方程,即可求解;(2)设该专卖店每天获利 元,根据题意,列出函数关系式,再根据二次函数的性质,即可求解;(3)设该店每天扣除捐出后的利润为 元,每天销售量为 盒,则每盒的销售单价为元/盒 ,每盒的利润为 元,根据题意列出关于的函数关系式,再根据二次函数的性质,即可求解.(1)解:根据题意得:解得:答:若该专卖店某天获利800元,销售单价为60或80元/盒;(2)解:设该专卖店每天获利 元,根据题意得:∴当销售单价x定70元/盒时,该专卖店每天获利最大,最大利润,900元;(3)解:设该店每天扣除捐出后的利润为 元,每天销售量为 盒,则每盒的销售单价为元/盒 ,每盒的利润为 元,根据题意得:∴该图象开口向下,对称轴为:根据题意得:当 时, 的减小而增大, ,解得:m的取值范围为【点睛】本题主要考查了一元二次方程的应用,二次函数的应用,明确题意,准确得到等量关系是解题的关键.2、 (1)(2)(3)-1<m<3或【解析】【分析】(1)利用待定系数法求解;(2)将函数解析式化为顶点式,得到抛物线的顶点坐标,即可得到的取值范围;(3)利用待定系数法求出直线AC的解析式,得到直线l的解析式为y=-x+m,求出点B的坐标,由此得到当直线lBC段相交时,m的取值范围;解,求出当时m的值,由此得到m的取值范围.(1)解:将点代入中,得,解得∴抛物线的表达式为(2)解:∵M是抛物线上点AC之间(含点AC)的一个动点,,∴抛物线的顶点坐标为(1,4),∴点M的纵坐标的取值范围为(3)解:设直线AC的解析式为y=kx+b,解得∴直线AC的解析式为y=-x+3,∵设平移后的直线为l,记ly轴的交点为∴直线l的解析式为y=-x+m∵抛物线的对称轴为直线x=1,点A(3,0),B(-1,0),将点B坐标代入y=-x+m,得m=-1,当直线lBC段相交时,m的取值范围是-1<m<3;当直线lAC段相交时,则整理得时,得综上,若l上方的抛物线有唯一交点,m的取值范围为-1<m<3或【点睛】此题考查了待定系数法求函数解析式,将一般式解析式化为顶点式,直线的平移,一元二次方程的判别式,图象交点问题,综合掌握一次函数与二次函数的知识是解题的关键.3、 (1)(2)(3)当时,yx的增大而减小【解析】【分析】(1)将点(1,4)和(2,3)代入中,得,进行计算即可得;(2)将配方得,即可得;(3)根据二次函数的性质得即可得.(1)解:将点(1,4)和(2,3)代入中,得解得则该二次函数表达式为(2)解:配方得:则顶点坐标为(1,4).(3)解:根据二次函数的性质得,当时,yx的增大而减小.【点睛】本题考查了二次函数,解题的关键是掌握二次函数的性质.4、 (1)(2)①;②,当时,;当时,;③【解析】【分析】(1)先确定A(-3,0),B(0,3),分别代入解析式,求得bc的值即可;(2)①利用对称轴与直线y=x+3的交点,确定点C(-1,2),代入解析式中,求的值;②分当m<1和m≥1两种情况解答即可;③根据b=m+1,结合前面的解答直接写出的范围即可.(1)∵直线分别与轴、轴交于点A(-3,0),B(0,3),A(-3,0),B(0,3)分别代入解析式,得解得∴抛物线的解析式为:(2)①∵的对称轴为直线,直线AB的解析式为y=x+3,∴点∵点和点重合,解得:②∵点,且点D在点C的下方,CD=2-()=∵点D在点C的下方,x=1时,轴,∴点F的纵坐标为==0,解得x== -1±|m-1|,时,x=-1+1-m=-m,此时,交点D不满足在C的下方,舍去;x=-1-1+m=m-2,EF=m≥1时,x=-1+m-1=m-2,此时,交点D不满足在C的下方,舍去;x=-1-m+1=-mEF=③∵==b=m+1,b=-(m+1)舍去,m≥1.【点睛】本题考查了待定系数法确定解析式,一元二次方程的解法,抛物线的平移,熟练掌握抛物线的性质,正确解方程是解题的关键.5、 (1)(2)【解析】【分析】(1)将点A(4,4)代入进行解答即可得;(2)由图像即可得.(1)解:将点A(4,4)代入得,解得(2)解:由图像可知,当时,【点睛】本题考查了正比函数,二次函数,解题的关键是掌握正比函数的性质和二次函数的性质. 

    相关试卷

    2021学年第30章 二次函数综合与测试精品同步达标检测题:

    这是一份2021学年第30章 二次函数综合与测试精品同步达标检测题,共36页。

    冀教版九年级下册第30章 二次函数综合与测试同步达标检测题:

    这是一份冀教版九年级下册第30章 二次函数综合与测试同步达标检测题,共29页。试卷主要包含了已知平面直角坐标系中有点A等内容,欢迎下载使用。

    数学九年级下册第30章 二次函数综合与测试课时作业:

    这是一份数学九年级下册第30章 二次函数综合与测试课时作业,共36页。试卷主要包含了抛物线y=﹣2,若点A等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map