![2022年必考点解析冀教版九年级数学下册第三十章二次函数重点解析试题(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12734574/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析冀教版九年级数学下册第三十章二次函数重点解析试题(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12734574/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析冀教版九年级数学下册第三十章二次函数重点解析试题(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12734574/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021学年第30章 二次函数综合与测试精品同步达标检测题
展开
这是一份2021学年第30章 二次函数综合与测试精品同步达标检测题,共36页。
九年级数学下册第三十章二次函数重点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知点、在二次函数的图象上,当,时,.若对于任意实数、都有,则的范围是( ).
A. B. C.或 D.
2、如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论正确的是( )
A.ac>0 B.a+b=1 C.4ac﹣b2≠4a D.a+b+c>0
3、对于二次函数,下列说法正确的是( )
A.若,则y随x的增大而增大 B.函数图象的顶点坐标是
C.当时,函数有最大值-4 D.函数图象与x轴有两个交点
4、如图,给出了二次函数的图象,对于这个函数有下列五个结论:①<0;②ab>0;③;④;⑤当y=2时,x只能等于0.其中结论正确的是( )
A.①④ B.③⑤ C.②⑤ D.③④
5、一个球从地面竖直向上弹起时的速度为8米/秒,经过秒时球的高度为米,和满足公式:h=v0t-12gt2v0表示球弹起时的速度,表示重力系数,取米/秒,则球不低于3米的持续时间是( )
A.秒 B.秒 C.秒 D.1秒
6、已知二次函数y=x2﹣2x+m,点A(x1,y1)、点B(x2,y2)(x1<x2)是图象上两点,下列结论正确的是( )
A.若x1+x2<2,则y1>y2 B.若x1+x2>2,则y1>y2
C.若x1+x2<﹣2,则y1<y2 D.若x1+x2>﹣2,则y1>y2
7、已知,是抛物线上的点,且,下列命题正确的是( )
A.若,则 B.若,则
C.若,则 D.若,则
8、若关于的一元二次方程的两根分别为,,则二次函数的对称轴为直线( )
A. B. C. D.
9、如图,已知二次函数的图像与x轴交于点,对称轴为直线.结合图象分析下列结论:①;②;③;④一元二次方程的两根分别为;⑤若为方程的两个根,则且.其中正确的结论个数是( )
A.2个 B.3个 C.4个 D.5个
10、小明以二次函数的图象为灵感为“2017北京房山国际葡萄酒大赛”设计了一款杯子,如图为杯子的设计稿,若,,则杯子的高为( )
A.14 B.11 C.6 D.3
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图是一座截面为抛物线的拱形桥,当拱顶离水面3米高时,水面宽l为6米,则当水面下降3米时,水面宽度为_______米.(结果保留根号)
2、二次函数(m、c 是常数,且m≠0)的图像过点 A(3,0),则方程mx2+2mx+c=0的根为______.
3、如图,在平面直角坐标系中,抛物线与轴交于,两点(点在点左侧),直线经过点;当时,直线分别与轴,抛物线交于,两点;当时,直线分别与轴,抛物线交于,两点;……;当(为正整数)时,直线分别与轴,抛物线交于,两点,则线段长为______.(用含的代数式表示)
4、已知抛物线y=(x﹣1)2有点A(0,y1)和B(3,y2),则y1___y2.(用“>”,“<”,“=”填写)
5、据了解,某蔬菜种植基地2019年的蔬菜产量为100万吨,2021年的蔬菜产量为万吨,如果2019年至2021年蔬菜产量的年平均增长率为,那么关于的函数解析式为_________.
三、解答题(5小题,每小题10分,共计50分)
1、小君根据学习经验对函数y=|ax2+bx+c|进行了探究.
(1)写出该函数自变量的取值范围 ;
(2)下列表示y与x的几组对应值.
x
…
﹣1
0
1
2
3
4
5
…
y
…
5
0
3
4
3
m
5
…
则m= ;
(3)如图,在平面直角坐标系xOy中,描出以上对各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(4)请根据图象,写出:
①当0≤x≤4时,y的最大值是 ;
②当z<x<z+1时,y随x的增大而增大,则z的取值范围是 .
2、已知在平面直角坐标系中,拋物线经过点、,顶点为点.
(1)求抛物线的表达式及顶点的坐标;
(2)联结,试判断与是否相似,并证明你的结论;
(3)抛物线上是否存在点,使得.如果存在,请求出点的坐标;如果不存在,请说明理由.
3、已知如图,二次函数的图像与x轴相交于点A、B两点,与y轴相交于点C,连接AC、BC,,抛物线的顶点为D.
(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点E,当取得最小值时,E点坐标为________;此时AE与BC的位置关系是________,________;
(3)抛物线对称轴右侧的函数图像上是否存在点M,满足,若存在求M点的横坐标;若不存在,请说明理由;
(4)若抛物线上一动点Q,当时,直接写出Q点坐标________.
4、已知抛物线经过,且顶点在y轴上.
(1)求抛物线解析式;
(2)直线与抛物线交于A,B两点.
①点P在抛物线上,当,且△ABP为等腰直角三角形时,求c的值;
②设直线交x轴于点,线段AB的垂直平分线交y轴于点N,当,时,求点N纵坐标n的取值范围.
5、二次函数(、、是常数,)的自变量和函数值部分对应值如下表:
…
-3
-2
-1
0
1
…
…
8
5
4
5
…
根据以上列表,回答下列问题:
(1)直接写出、的值;
(2)求此二次函数的解析式.
-参考答案-
一、单选题
1、A
【解析】
【分析】
先根据二次函数的对称性求出b的值,再根据对于任意实数x1、x2都有y1+y2≥2,则二次函数y=x2-4x+n的最小值大于或等于1即可求解.
【详解】
解:∵当x1=1、x2=3时,y1=y2,
∴点A与点B为抛物线上的对称点,
∴,
∴b=-4;
∵对于任意实数x1、x2都有y1+y2≥2,
∴二次函数y=x2-4x+n的最小值大于或等于1,
即,
∴c≥5.
故选:A.
【点睛】
本题考察了二次函数的图象和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),其对称轴是直线:,顶点纵坐标是,抛物线上两个不同点P1(x1,y1),P2(x2,y2),若有y1=y2,则P1,P2两点是关于抛物线对称轴对称的点,且这时抛物线的对称轴是直线:.
2、D
【解析】
【分析】
由抛物线开口方向及抛物线与轴交点位置,即可得出、,进而判断结论A;由抛物线顶点的横坐标可得出,进而判断结论B;由抛物线顶点的纵坐标可得出,进而判断结论C;由、,进而判断结论D.由此即可得出结论.
【详解】
解:A、抛物线开口向下,且与轴正半轴相交,
,,
,结论A错误,不符合题意;
B、抛物线顶点坐标为,,
,
,即,结论B错误,不符合题意;
C、抛物线顶点坐标为,,
,
,结论C错误,不符合题意;
D、,,
,结论D正确,符合题意.
故选:D.
【点睛】
本题考查了二次函数图象与系数的关系以及二次函数的性质,解题的关键是观察函数图象,逐一分析四个选项的正误.
3、A
【解析】
【分析】
先将二次函数的解析式化为顶点式,再逐项判断即可求解.
【详解】
解:∵,且 ,
∴二次函数图象开口向下,
∴A、若,则y随x的增大而增大,故本选项正确,符合题意;
B、函数图象的顶点坐标是,故本选项错误,不符合题意;
C、当时,函数有最大值-2,故本选项错误,不符合题意;
∵ ,
∴D、函数图象与x轴没有交点,故本选项错误,不符合题意;
故选:A
【点睛】
本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.
4、D
【解析】
【分析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
①由抛物线与x轴有两个交点可以推出b2-4ac>0,故①错误;
②由抛物线的开口方向向下可推出a<0;
因为对称轴为x==2>0,又因为a<0,∴b>0,故ab<0;②错误;
③由图可知函数经过(-1,0),∴当,,故③正确;
④对称轴为x=,∴,故④正确;
⑤当y=2时,,故⑤错误;
∴正确的是③④
故选:D
【点睛】
二次函数y=ax2+bx+c系数符号的确定:
(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.
(2)b由对称轴和a的符号确定:由对称轴公式x=−判断符号.
(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0.
(4)b2-4ac由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0.
5、A
【解析】
【分析】
根据已知得到函数关系式,将h=3代入,求出t值的差即为答案.
【详解】
解:由题意得,
当h=3时,,
解得,
∴球不低于3米的持续时间是1-0.6=0.4(秒),
故选:A.
【点睛】
此题考查了二次函数的实际应用,解一元二次方程,正确理解题中各字母的值,代入求出函数解析式解决问题是解题的关键.
6、A
【解析】
【分析】
由二次函数y=x2﹣2x+m可知对称轴为x=1,当x1+x2<2时,点A与点B在对称轴的左边,或点A在左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离小,再结合抛物线开口方向,即可判断.
【详解】
解:∵二次函数y=x2﹣2x+m,
∴抛物线开口向上,对称轴为x=1,
∵x1<x2,
∴当x1+x2<2时,点A与点B在对称轴的左边,或点A在左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离大,
∴y1>y2,
故选:A.
【点睛】
本题考查了二次函数的性质,灵活应用x1+x2与2的关系确定点A、点B与对称轴的关系是解决本题的关键.
7、A
【解析】
【分析】
根据抛物线解析式可确定对称轴为,根据点与对称轴的距离的大小以及函数值的大小关系即可判断的符号,即开口方向
【详解】
解:∵的对称轴为,且
∴若,
则离对称轴远,则抛物线的开口朝下,即,故A正确
若,
则离对称轴远,则抛物线的开口朝上,即,故C不正确
对于B,D选项不能判断的符号
故选A
【点睛】
本题考查了二次函数图象的性质,掌握的性质是解题的关键.
8、C
【解析】
【分析】
根据两根之和公式可以求出对称轴公式.
【详解】
解:∵一元二次方程ax2+bx+c=0的两个根为−2和4,
∴x1+x2=− =2.
∴二次函数的对称轴为x=−=×2=1.
故选:C.
【点睛】
本题考查了求二次函数的对称轴,要求熟悉二次函数与一元二次方程的关系和两根之和公式,并熟练运用.
9、C
【解析】
【分析】
根据图像,确定a,b,c的符号,根据对称轴,确定b,a的关系,当x=-1时,得到a-b+c=0,确定a,c的关系,从而化简一元二次方程,求其根即可,利用平移的思想,把y=的图像向上平移1个单位即可,确定方程的根.
【详解】
∵抛物线开口向上,
∴a>0,
∵抛物线与y轴的交点在y轴的负半轴上,
∴c<0,
∵抛物线的对称轴在y轴的右边,
∴b<0,
∴,
故①正确;
∵二次函数的图像与x轴交于点,
∴a-b+c=0,
根据对称轴的左侧,y随x的增大而减小,
当x=-2时,y>0即,
故②正确;
∵,
∴b= -2a,
∴3a+c=0,
∴2a+c=2a-3a= -a<0,
故③正确;
根据题意,得,
∴,
解得,
故④错误;
∵=0,
∴,
∴y=向上平移1个单位,得y=+1,
∴为方程的两个根,且且.
故⑤正确;
故选C.
【点睛】
本题考查了抛物线的图像与系数的符号,抛物线的对称性,抛物线与一元二次方程的关系,抛物线的增减性,平移,熟练掌握抛物线的性质,抛物线与一元二次方程的关系是解题的关键.
10、B
【解析】
【分析】
首先由y=2x2-4x+8求出D点的坐标为(1,6),然后根据AB=4,可知B点的横坐标为x=3,代入y=2x2-4x+8,得到y=14,所以CD=14-6=8,又DE=3,所以可知杯子高度.
【详解】
解:,
抛物线顶点的坐标为,
,
点的横坐标为,
把代入,得到,
,
.
故选:B.
【点睛】
本题主要考查了二次函数的应用,求出顶点D和点B的坐标是解决问题的关键.
二、填空题
1、6
【解析】
【分析】
建立平面直角坐标系,根据题意设出抛物线解析式,利用待定系数法求出解析式,根据题意计算即可.
【详解】
建立平面直角坐标系如图:
则抛物线顶点C坐标为(0,3),
设抛物线解析式y=ax2+3,
将A点坐标(﹣3,0)代入,可得:0=9a+3,
解得:a=﹣,
故抛物线解析式为y=﹣x2+3,
当水面下降3米,通过抛物线在图上的观察可转化为:
当y=﹣3时,对应的抛物线上两点之间的距离,
也就是直线y=﹣3与抛物线相交的两点之间的距离,
将y=﹣3代入抛物线解析式得出:﹣3=﹣x2+3,
解得:x=±,
所以水面宽度为米,
故答案为:.
【点睛】
本题考查的是二次函数的应用,掌握二次函数的性质、正确建立平面直角坐标系是解题的关键.
2、3或-5##-5或3
【解析】
【分析】
将A点坐标代入得,解得,原方程变为,因式分解法解方程即可.
【详解】
解:将A点坐标代入得
解得
∴原方程变为
∴
∴或
解得的值为3或
故答案为:3或.
【点睛】
本题考查了解一元二次方程,二次函数与一元二次方程的关系.解题的关键在于理解二次函数与一元二次方程的关系.
3、
【解析】
【分析】
根据抛物线解析式结合题意可求出A点坐标,又点A在直线上,即可求出,即得出直线解析式.当时,直线解析式即为,即可求出此时的坐标.联立抛物线解析式和直线解析式,即可求出的坐标,再代入抛物线解析式,可求出其纵坐标.最后利用两点的距离公式就出结果即可.
【详解】
∵与x轴交于A,B两点(点A在点B左侧),
令,则,
解得:,.
∴A点坐标为(-1,0).
∵直线经过点A,
∴,
解得:,
∴该直线解析式为.
当时,直线解析式为,
令,则,
∴的坐标为(0,n).
联立,即,
解得:,.
∴的横坐标为n+1.
将代入中,得:,
∴的坐标为().
∴
故答案为:.
【点睛】
本题为二次函数与一次函数综合题,较难.考查二次函数图象与坐标轴的交点坐标,利用待定系数法求函数解析式,二次函数图象与一次函数图象的交点以及两点的距离公式.正确求出和的坐标是解答本题的关键.
4、<
【解析】
【分析】
分别把A、B点的横坐标代入抛物线解析式求解即可.
【详解】
解:x=0时,y1=(0﹣1)2=1,
x=3时,y3=(3﹣1)2=4,
∴y1<y2.
故答案为:<.
【点睛】
本题考查了二次函数图象上点的坐标特征,求出相应的函数值是解题的关键.
5、
【解析】
【分析】
根据题意可得2020年的蔬菜产量为,2021年的蔬菜产量为,2021年的蔬菜产量为y万吨,由此即可得.
【详解】
解:根据题意可得:2020年的蔬菜产量为,
2021年的蔬菜产量为,
∴,
故答案为: .
【点睛】
题目主要考查二次函数的应用,理解题意,熟练掌握增长率问题是解题关键.
三、解答题
1、 (1)全体实数;
(2)0;
(3)答案见解析;
(4)①4;②z≥4或0≤z≤1
【解析】
【分析】
(1)根据函数解析式为整式,即可得函数自变量的取值范围;
(2)观察表格知,函数关于直线x=2对称,从而由对称性即可求得m的值;
(3)用光滑的曲线顺次连接各点即得函数图象;
(4)①根据图象即可求得y的最大值;
②观察图象即可求得z的取值范围.
(1)
(1)函数y=|ax2+bx+c|的自变量的取值范围为全体实数.
故答案为:全体实数.
(2)
观察表格可知,函数关于直线x=2对称,与x轴交于(0,0)和(4,0),∴x=4时,m=0.
故答案为:0.
(3)
函数图象如图所示:
(4)
①观察图象可知,当0≤x≤4时,y的最大值是4.
故答案为:4.
②观察图象可知,当z≥4或0≤z≤1时,y随x的增大而增大.
故答案为:z≥4或0≤z≤1.
【点睛】
本题考查了函数及其图象、二次函数的图象与性质,关键是观察表格,数形结合.
2、 (1),顶点坐标为:;
(2),证明见解析;
(3)存在点P,,理由见解析.
【解析】
【分析】
(1)根据题意设抛物线解析式为:,将点C代入解得,代入抛物线可得函数解析式;将一般式化为顶点式即可确定顶点坐标;
(2)结合图象,分别求出的三边长,的三边长,由勾股定理逆定理可得为直角三角形,且两个三角形的三条边对应成比例,即可证明;
(3)设存在点P使,作线段AC的中垂线交AC于点E,交AP于点F,连接CF,可得,,利用等腰直角三角形的性质可得,,再由勾股定理可得,设,根据直角坐标系中两点之间的距离利用勾股定理可得,同理可得=,利用代入消元法解方程即可确定点F的坐标,然后求出直线AF的直线解析式,联立抛物线解析式求交点坐标即可得.
(1)
解:抛物线经过点,,,
设抛物线解析式为:,
将点C代入可得:,
解得:,
∴,
∴顶点坐标为:;
(2)
解:如图所示:
为直角三角形且三边长分别为:,,,
的三边长分别为:,
,,
∴,
∴为直角三角形,
∵,
∴;
(3)
解:设存在点P使,作线段AC的中垂线交AC于点E,交AP于点F,连接CF,如(2)中图:
∴,,
∵,
∴,
∴为等腰直角三角形,
∴,,
∴,即
解得:,
设,
∴,,
∴,
整理得:①,
=,
即②,
将①代入②整理得:,
解得:,,
∴,,
∴或(不符合题意舍去),
∴,,
设直线FA解析式为:,将两个点代入可得:
,
解得:,
∴,
∴联立两个函数得:,
将①代入②得:,
整理得:,
解得:,,
当时,,
∴.
【点睛】
题目主要考查待定系数法确定函数解析式,相似三角形得判定和性质,中垂线的性质,等腰直角三角形的性质,勾股定理等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.
3、 (1)y=x2-4x+3;
(2)(2,1);AE⊥BC,;
(3)存在,M点的横坐标为或;
(4)Q点的坐标为(,)或(,) .
【解析】
【分析】
(1)求得点C的坐标和点B的坐标,利用待定系数法即可求解;
(2)连接BC交对称轴于点E,此时AE+CE取得最小值,求得直线BC的解析式,即可求得E点坐标,进一步计算即可求解;
(3)分类求解,利用tan∠ACB= tan∠BAM,求得G点坐标,利用待定系数法求得直线AG的解析式,联立方程即可求解;
(4)先求得tan∠ACO=,同(3)的方法即可求解.
(1)
解:令x=0,则y=3,
∴点C的坐标为(0,3),即OC=1,
∵tan∠ABC=1,即,
∴OC=OB=1,
∴点B的坐标为(3,0),
把B(3,0)代入y=x2+bx+3得32+3b+3=0,
解得:b=-4,
∴抛物线的解析式为y=x2-4x+3;
(2)
解:y=x2-4x+3=(x-2)2-1,
∴顶点D的坐标为(2,-1),对称轴为x=2,
解方程(x-2)2-1=0,得:x1=1,x2=3,
∴点A的坐标为(1,0),
连接BC交对称轴于点E,此时,AE=BE,
∴AE+CE=BE+CE=BC,
∴AE+CE的最小值为BC,
设直线BC的解析式为y=kx+3,
把B(3,0)代入y=kx+3,得:0=3k+3,
解得:k=-1,
∴直线BC的解析式为y=-x+3,
当x=2时,y=1,
∴E点坐标为(2,1),
∵AE=,BE=,AB=3-1=2,
,
∴AE2+BE2=AB2,AE=BE,
∴△AEB为等腰直角三角形,
∴AE与BC的位置关系是:AE⊥BC,
∵CE=,
∴tan∠ACE=,
故答案为:(2,1);AE⊥BC,;
,
(3)
解:设对称轴与x轴交于点F,交AM于点G,
∵∠ACB=∠BAM,
∴tan∠ACB= tan∠BAM,
由(2)得tan∠ACE,
∴tan∠BAM=,
∵AF=OF-OA=1,
∴GF=,
∴G点坐标为(2,),
同理求得直线AG的解析式为y=x-,
解方程x-=x2-4x+3,得x1=1,x2=,
∴M点的横坐标为;
当AM在x轴下方时,
同理求得直线AG1的解析式为y=x+,
解方程x+=x2-4x+3,得x1=1,x2=,
∴M1点的横坐标为;
综上,存在,M点的横坐标为或;
,
(4)
解:∵OA=1,OC=3,
∴tan∠ACO=,
同(3)得H点坐标为(2,),
直线AQ的解析式为y=x-,
解方程x-=x2-4x+3,得x1=1,x2=,
∴Q点的坐标为(,);
当AQ在x轴下方时,
同理求得直线AQ1的解析式为y=x+,
解方程x+=x2-4x+3,得x1=1,x2=,
∴Q1点的坐标为(,);
综上,Q点的坐标为(,)或(,).
,
【点睛】
本题是二次函数综合题,主要考查了待定系数法求函数解析式、解一元二次方程、解直角三角形等,要注意分类求解,避免遗漏.
4、 (1)
(2)①c的值为-1,②
【解析】
【分析】
(1)根据抛物线经过,且顶点在y轴上,待定系数法求解析式即可;
(2)①根据题意作出图形,根据等腰直角三角形的性质可得,根据在抛物线上,代入求解即可,根据图形取舍即可;②设,.把代入中,得,根与系数的关系可得,由勾股定理得,,根据垂直平分线的性质可得,化简可得,进而可得当时,n随k的增大而减小,由可得,进而求得的取值范围
(1)
∵抛物线经过,且顶点在y轴上,
,解得
∴抛物线解析式为.
(2)
①依题意得:当时,轴,
与∠PBA都不可能为90°,
∴只能是,,∴点P在AB的对称轴(y轴)上,
∴点P为抛物线的顶点,即.
不妨设点A在点B的左侧,直线与y轴交于点C.
,,
,
,,
,
,
∴点
把代入中,得:
解得:,(不合题意,舍去).
∴c的值为-1.
②设,.
把代入中,得,
,由根与系数的关系可得,.
由勾股定理得,
∵点N在AB的垂直平分线上,
,
,
,
化简得.
∵直线与x轴相交,∴点A,B不关于y轴对称,
,
又,
,
,即,
.
将代入,得,
.
由反比例函数的性质,可知:当时,.
在二次函数中,
,对称轴为直线,
∴当时,n随k的增大而减小,
,
.
【点睛】
本题考查了二次函数、一次函数图象与性质,反比例函数的性质,一元二次方程根与系数的关系,等腰三角形的性质,待定系数法求解析式,数形结合是解题的关键.
5、 (1)c=5,m=8
(2)y=x²+2x+5
【解析】
【分析】
(1)根据抛物线的对称性及表格中函数值x相等可求出对称轴进而求出m的值;根据自变量x=0可求出抛物线与y轴的交点,即可求得c的值;
(2)根据对称轴为x=-1,得到抛物线顶点为(-1,4),设顶点式为y=a(x+1)2+4,代入其中一个点求出a的值即可求出二次函数解析式.
(1)
解:根据图表可知:
二次函数的图象过点(0,5),(-2,5),
∴二次函数的对称轴为:直线,
∵直线x=-3到对称轴x=-1的距离为2,直线x=1到对称轴x=-1的距离也为3,
∴(-3,8)的对称点为(1,8),
∴m=8,
当x=0时,由表格中数据可知:c=5.
(2)
解:∵对称轴是直线x=-1,
∴由表格中数据可知:顶点为(-1,4),
设y=a(x+1)2+4,
将(0,5)代入y=a(x+1)2+4得,a+4=5,
解得a=1,
∴这个二次函数的解析式为y=(x+1)2+4=x²+2x+5.
【点睛】
本题考查的是二次函数的性质,二次函数图象上点的坐标特征,待定系数法求二次函数的解析式,能熟练求出函数对称轴是解本题的关键.
相关试卷
这是一份初中数学第30章 二次函数综合与测试优秀随堂练习题,共32页。试卷主要包含了同一直角坐标系中,函数和,抛物线的对称轴是等内容,欢迎下载使用。
这是一份数学九年级下册第30章 二次函数综合与测试课时作业,共36页。试卷主要包含了抛物线y=﹣2,若点A等内容,欢迎下载使用。
这是一份冀教版九年级下册第30章 二次函数综合与测试同步测试题,共41页。试卷主要包含了二次函数y=ax2﹣4ax+c等内容,欢迎下载使用。