终身会员
搜索
    上传资料 赚现金

    2022年最新精品解析冀教版七年级数学下册第十一章 因式分解专项练习练习题(含详解)

    立即下载
    加入资料篮
    2022年最新精品解析冀教版七年级数学下册第十一章 因式分解专项练习练习题(含详解)第1页
    2022年最新精品解析冀教版七年级数学下册第十一章 因式分解专项练习练习题(含详解)第2页
    2022年最新精品解析冀教版七年级数学下册第十一章 因式分解专项练习练习题(含详解)第3页
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版七年级下册第十一章 因式分解综合与测试当堂检测题

    展开

    这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试当堂检测题,共17页。试卷主要包含了计算的值是等内容,欢迎下载使用。


    冀教版七年级数学下册第十一章 因式分解专项练习

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、不论xy取何实数,代数式x2-4xy2-6y+13总是(      

    A.非负数 B.正数 C.负数 D.非正数

    2、下列从左边到右边的变形,是因式分解的是(      

    A.(3﹣x)(3+x)=9﹣x2 B.x2y2=(xy)(xy

    C.x2xxx﹣1) D.2yzy2zzy(2zyz)+z

    3、已知a2b+c)=b2a+c)=2021,且abc互不相等,则c2a+b)﹣2020=(  )

    A.0 B.1 C.2020 D.2021

    4、计算的值是(  )

    A. B. C. D.2

    5、下列各式从左到右进行因式分解正确的是(  )

    A.4a2﹣4a+1=4aa﹣1)+1 B.x2﹣2x+1=(x﹣1)2

    C.x2+y2=(x+y2 D.x2﹣4y=(x+4y)(x﹣4y

    6、下列各式中,能用平方差公式分解因式的是(  )

    A.﹣a2b2 B.﹣a2+b2 C.a2+(﹣b2 D.a3ab3

    7、已知a+b=2,a-b=3,则等于(      

    A.5 B.6 C.1 D.

    8、下列等式中,从左到右的变形是因式分解的是(      

    A. B.

    C. D.

    9、下列各式中能用平方差公式计算的是(  )

    A.(xy)(yx B.(xy)(yx

    C.(xy)(﹣yx D.(xy)(yx

    10、多项式分解因式的结果是(    

    A. B.

    C. D.

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、分解因式:______.

    2、若实数x满足,则______.

    3、要使多项式x2ax﹣20在整数范围内可因式分解,给出整数a=____________.

    4、因式分解:_______.

    5、因式分解:_______.

    三、解答题(5小题,每小题10分,共计50分)

    1、因式分解:

    2、已知xy=5,x2yxy2x+y=40.

    (1)求xy的值.

    (2)求x2+y2的值.

    3、(1)计算:(12a3-6a2+3a)÷3a

    (2)因式分解:

    4、分解因式:

    (1)

    (2)

    (3)计算:

    (4)

    5、因式分解:

    (1)

    (2)

     

    -参考答案-

    一、单选题

    1、A

    【解析】

    【分析】

    先把原式化为,结合完全平方公式可得原式可化为从而可得答案.

    【详解】

    解:x2-4xy2-6y+13

    故选A

    【点睛】

    本题考查的是代数式的值,非负数的性质,利用完全平方公式分解因式,掌握“”是解本题的关键.

    2、C

    【解析】

    【分析】

    根据因式分解的定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式),进行判断即可.

    【详解】

    解:A、(3﹣x)(3+x)=9﹣x2属于整式的乘法运算,不是因式分解,不符合题意;

    B、,原式错误,不符合题意;

    C、x2xxx﹣1),属于因式分解,符合题意;

    D、2yzy2zz,原式分解错误,不符合题意;

    故选:C.

    【点睛】

    本题考查了因式分解的定义,熟记因式分解的定义即把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式)是解本题的关键.

    3、B

    【解析】

    【分析】

    根据题意先通过已知等式,找到abc的关系再求值即可得出答案.

    【详解】

    解:∵a2b+c)=b2a+c).

    a2b+a2cab2b2c=0.

    abab)+ca+b)(ab)=0.

    ∴(ab)(ab+ac+bc)=0.

    ab

    a2b+c)=2021.

    aab+ac)=2021.

    a(﹣bc)=2021.

    ∴﹣abc=2021.

    abc=﹣2021.

    ∴原式=cac+bc)﹣2020=c(﹣ab)﹣2020

    =﹣abc﹣2020

    =2021﹣2020

    =1.

    故选:B.

    【点睛】

    本题考查用因式分解求代数式的值,利用题中等式得到ab+bc+ac=0是解答本题的关键.

    4、B

    【解析】

    【分析】

    直接找出公因式进而提取公因式,进行分解因式即可.

    【详解】

    解:

    故选:B

    【点睛】

    此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.

    5、B

    【解析】

    【分析】

    因式分解是将一个多项式写成几个整式乘积的形式,并且分解要彻底,根据完全平方公式和因式分解的定义逐项分析判断即可

    【详解】

    解:A. 4a2﹣4a+1=,故该选项不符合题意;

    B. x2﹣2x+1=(x﹣1)2,故该选项符合题意;

    C. x2+y2x+y2,故该选项不符合题意;

    D. x2﹣4yx+4y)(x﹣4y),故该选项不符合题意;

    故选B

    【点睛】

    本题考查了因式分解的定义,完全平方公式因式分解,理解因式分解的定义是解题的关键.

    6、B

    【解析】

    【分析】

    能用平方差公式分解因式的式子必须是两项是平方项,符号为异号.

    【详解】

    解:A、两项的符号相同,不能用平方差公式分解因式;故此选项错误;

    B、,能用平方差公式分解因式,故此选项正确;

    C、两项的符号相同,不能用平方差公式分解因式,故此选项错误;

    D.提公因式后不是平方差形式,故不能用平方差公式因式分解,故此选项错误.

    故选B.

    【点睛】

    本题考查了平方差公式分解因式,熟记平方差公式结构两项式,异号,平方项(或变性后具备平方项)是解题的关键.

    7、B

    【解析】

    【分析】

    根据平方差公式因式分解即可求解

    【详解】

    a+b=2,a-b=3,

    故选B

    【点睛】

    本题考查了根据平方差公式因式分解,掌握平方差公式是解题的关键.

    8、D

    【解析】

    【分析】

    根据因式分解的定义(把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解)、平方差公式()逐项判断即可得.

    【详解】

    解:A、等式右边不是整式积的形式,不是因式分解,则此项不符题意;

    B、是整式的乘法运算,不是因式分解,则此项不符题意;

    C、等式右边等于,与等式左边不相等,不是因式分解,则此项不符题意;

    D、等式右边等于,即等式的两边相等,且等式右边是整式积的形式,是因式分解,则此项符合题意;

    故选:D.

    【点睛】

    本题考查了因式分解的定义、整式的乘法运算,熟记因式分解的定义是解题关键.

    9、A

    【解析】

    【分析】

    能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反,对各选项分析判断后利用排除法.

    【详解】

    解:A、(xy)(yx)=不符合平方差公式的特点,故本选项符合题意;

    B、(xy)(yx),不符合平方差公式的特点,不能用平方差公式计算,故本选项不合题意;

    C、(xy)(﹣yx)不符合平方差公式的特点,不能用平方差公式计算,故本选项不符合题意;

    D、(xy)(yx)不符合平方差公式的特点,不能用平方差公式计算,故本选项不符合题意;

    故选A.

    【点睛】

    本题考查的是应用平方差公式进行计算的能力,掌握平方差公式的结构特征是正确解题的关键.

    10、B

    【解析】

    【分析】

    先提取公因式a,再根据平方差公式进行二次分解.平方差公式:a2-b2=(a+b)(a-b).

    【详解】

    解:ax2-ay2

    =ax2-y2

    =ax+y)(x-y).

    故选:B.

    【点睛】

    本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.

    二、填空题

    1、

    【解析】

    【分析】

    根据提取公因式法,提取公因式即可求解.

    【详解】

    解:

    故答案为:

    【点睛】

    本题考查了因式分解,解题的关键是熟练掌握提取公因式法.

    2、2022

    【解析】

    【分析】

    x22x+1x22x1代入计算可求解.

    【详解】

    解:∵x22x10

    x22x+1x22x1

    ∴原式=2xx22x26x+2020

    2x2x+1)﹣2x26x+2020

    4x2+2x2x26x+2020

    2x24x+2020

    2x22x+2020

    2×1+2020

    2022

    故答案为:2022

    【点睛】

    本题主要考查因式分解的应用,适当的进行因式分解,整体代入是解题的关键.

    3、±1或±19或±8

    【解析】

    【分析】

    把﹣20分成20和﹣1,﹣2和10,5和﹣4,﹣5和4,2和﹣10,﹣20和1,进而得出即原式分解为(x+20)(x﹣1),(x﹣2)(x+10),(x+5)(x﹣4),(x﹣5)(x+4),(x+2)(x﹣10),(x﹣20)(x+1),即可得到答案.

    【详解】

    解:当x2ax﹣20=(x+20)(x﹣1)时,a=20+(﹣1)=19,

    x2ax﹣20=(x﹣2)(x+10)时,a=﹣2+10=8,

    x2ax﹣20=(x+5)(x﹣4)时,a=5+(﹣4)=1,

    x2ax﹣20=(x﹣5)(x+4)时,a=﹣5+4=﹣1,

    x2ax﹣20=(x+2)(x﹣10)时,a=2+(﹣10)=﹣8,

    x2ax﹣20=(x﹣20)(x+1)时,a=﹣20+1=﹣19,

    综上所述:整数a的值为±1或±19或±8.

    故答案为:±1或±19或±8.

    【点睛】

    本题主要考查对因式分解−十字相乘法的理解和掌握,理解x2+(abxab=(xa)(xb)是解此题的关键.

    4、

    【解析】

    【分析】

    利用十字相乘法分解因式即可得.

    【详解】

    解:因为,且的一次项的系数,

    所以

    故答案为:

    【点睛】

    本题考查了因式分解,熟练掌握十字相乘法是解题关键.

    5、

    【解析】

    【分析】

    先提出公因式,再利用平方差公式进行分解,即可求解.

    【详解】

    解:

    故答案为:

    【点睛】

    本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法,并灵活选用合适的方法解答是解题的关键.

    三、解答题

    1、

    【解析】

    【分析】

    根据题意先提取公因式,进而利用完全平方差公式即可进行因式分解.

    【详解】

    解:

    【点睛】

    本题考查因式分解,注意掌握因式分解的常见方法有提取公因式法、公式法、十字交叉相乘法、分组分解法等.

    2、(1)xy=10;(2)x2+y2=110.

    【解析】

    【分析】

    (1)利用提取公因式法对(x2yxy2x+y)进行因式分解,代入求值即可.

    (2)利用完全平方公式进行变形处理得到:x2+y2=(xy2+2xy,代入求值即可.

    【详解】

    解:(1)∵xy=5,x2yxy2x+y=40,

    x2yxy2x+y

    xyxy)﹣(xy

    =(xy﹣1)(xy

    xy=5,

    ∴(5﹣1)(xy)=40,

    xy=10.

    (2)x2+y2=(xy2+2xy=102+2×5=110.

    【点睛】

    本题考查了因式分解和完全平方公式,做题的关键是掌握完全平方公式的变形x2+y2=(xy2+2xy

    3、(1)4a2-2a+1;(2)2aa-2)2

    【解析】

    【分析】

    (1)根据多项式除以单项式的法则进行计算即可;

    (2)先提公因式,再根据完全平方公式进行因式分解即可.

    【详解】

    解(1)(12a3-6a2+3a)÷3a

    =4a2-2a+1;

    (2)

    =2aa2-4a+4)

    =2aa-2)2

    【点睛】

    本题考查了整式的除法,以及因式分解法,掌握运算法则和完全平方公式是解题的关键.

    4、(1);(2);(3)85;(4)

    【解析】

    【分析】

    (1)综合利用提公因式法和公式法进行因式分解即可得;

    (2)利用分组分解法进行因式分解即可得;

    (3)先利用公式法分解,从而可得的值,再代入计算即可得;

    (4)先利用十字相乘法分解,再利用提公因式法进行因式分解即可得.

    【详解】

    解:(1)原式

    (2)原式

    (3)

    (4)原式

    【点睛】

    本题考查了因式分解和因式分解的应用,熟练掌握并灵活运用因式分解的各方法是解题关键.

    5、 (1)

    (2)

    【解析】

    【分析】

    (1)先提公因式,再逆用平方差公式进行因式分解;

    (2)先提公因式,再逆用完全平方公式进行因式分解.

    (1)

    解:

    (2)

    解:

    【点睛】

    本题主要考查综合运用公式法、提公因式法进行因式分解,熟练掌握提公因式法、公式法是解决本题的关键.

     

    相关试卷

    数学冀教版第十一章 因式分解综合与测试复习练习题:

    这是一份数学冀教版第十一章 因式分解综合与测试复习练习题,共16页。试卷主要包含了对于有理数a,b,c,有,下列因式分解正确的是,下列因式分解中,正确的是等内容,欢迎下载使用。

    数学七年级下册第十一章 因式分解综合与测试课堂检测:

    这是一份数学七年级下册第十一章 因式分解综合与测试课堂检测,共16页。试卷主要包含了对于有理数a,b,c,有,下列多项式中有因式x﹣1的是,下列因式分解正确的是,已知实数x,y满足,如图,长与宽分别为a等内容,欢迎下载使用。

    2021学年第十一章 因式分解综合与测试同步测试题:

    这是一份2021学年第十一章 因式分解综合与测试同步测试题,共17页。试卷主要包含了已知,,那么的值为,已知x2+x﹣6=,对于有理数a,b,c,有等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map