![2022年最新精品解析冀教版七年级数学下册第十一章 因式分解专题攻克练习题(含详解)第1页](http://img-preview.51jiaoxi.com/2/3/12719482/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析冀教版七年级数学下册第十一章 因式分解专题攻克练习题(含详解)第2页](http://img-preview.51jiaoxi.com/2/3/12719482/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析冀教版七年级数学下册第十一章 因式分解专题攻克练习题(含详解)第3页](http://img-preview.51jiaoxi.com/2/3/12719482/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学冀教版第十一章 因式分解综合与测试当堂达标检测题
展开这是一份数学冀教版第十一章 因式分解综合与测试当堂达标检测题,共19页。试卷主要包含了下列多项式,下列因式分解正确的是等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解专题攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列等式中,从左到右的变形是因式分解的是( )
A.a(a-3)=a2-3a B.(a+3)2=a2+6a+9
C.6a2+1=a2(6+) D.a2-9=(a+3)(a-3)
2、下列等式中,从左到右是因式分解的是( )
A. B.
C. D.
3、下列各式中,从左到右的变形是因式分解的是( )
A. B.
C. D.
4、下列多项式:(1)a2+b2;(2)x2-y2;(3)-m2+n2;(4)-b2-a2;(5)-a6+4,能用平方差公式分解的因式有( )
A.2个 B.3个 C.4个 D.5个
5、下列因式分解正确的是( )
A.a2+1=a(a+1) B.
C.a2+a﹣5=(a﹣2)(a+3)+1 D.
6、因式分解x2y﹣9y的正确结果是( )
A.y(x+3)(x﹣3) B.y(x+9)(x﹣9) C.y(x2﹣9) D.y(x﹣3)2
7、下列各式中,能用完全平方公式分解因式的是( )
A. B.
C. D.
8、下列因式分解正确的是( )
A.16m2-4=(4m+2)(4m-2) B.m4-1=(m2+1)(m2-1)
C.m2-6m+9=(m-3)2 D.1-a2=(a+1)(a-1)
9、下列等式从左到右的变形,属于因式分解的是( )
A.(x+1)(x﹣1)=x2﹣1 B.x2﹣8x+16=(x﹣4)2
C.x2﹣2x+1=x(x﹣1)+1 D.x2﹣4y2=(x+4y)(x﹣4y)
10、下列各等式中,从左到右的变形是正确的因式分解的是( )
A.2x•(x﹣y)=2x2﹣2xy B.(x+y)2﹣x2=y(2x+y)
C.3mx2﹣2nx+x=x(3mx﹣2n) D.x2+3x﹣2=x(x+3)﹣2
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知:x+y=0.34,x+3y=0.86,则x2+4xy+4y2=_____.
2、因式分解:-x+xy-y=________.
3、把多项式分解因式结果是______.
4、因式分解___________.
5、若,,则的值为______.
三、解答题(5小题,每小题10分,共计50分)
1、若一个正整数a可以表示为a=(b+1)(b-2),其中b为大于2的正整数,则称a为“十字数”,b为a的“十字点”.例如28=(6+1)×(6-2)=7×4.
(1)“十字点”为7的“十字数”为 ;130的“十字点”为 ;
(2)若b是a的“十字点”,且a能被(b-1)整除,其中b为大于2的正整数,求a.
2、阅读下列材料:
材料一:对于一个百位数字不为0的四位自然数,以它的百位数字作为十位,十位数字作为个位,得到一个两位数,若等于的千位数字与个位数字的平方差,则称数为“平方差数”.
例如:7136是“平方差数”,因为,所以7136是“平方差数”;
又如:4251不是“平方差数”,因为,所以4251不是“平方差数”.
材料二:我们有时可以利用分解因数的方法解决求整数解的问题,例如:若,为两个正整数(),且,则,为18的正因数,又因为18可以分解为或或,所以方程的正整数解为或或.
根据上述材料解决问题:
(1)判断9810,6361是否是“平方差数”?并说明理由;
(2)若一个四位“平方差数”,将它的千位数字、个位数字及相加,其和为30,求所有满足条件的“平方差数”.
3、阅读下面材料:小颖这学期学习了轴对称的知识,知道了像角、等腰三角形、正方形、圆等图形都是轴对称图形,类比这一特性,小颖发现像等代数式,如果任意交换两个字母的位置,式子的值都不变.太神奇了!于是她把这样的式子命名为神奇对称式,她还发现像等神奇对称式都可以用表示.例如:,.于是小颖把和称为基本神奇对称式,请根据以上材料解决下列问题:
(1)①,②,③,④中,属于神奇对称式的是_______(填序号);
(2)已知.
①若,则神奇对称式_______;
②若,求神奇对称式的最小值.
4、因式分解:
(1); (2).
5、因式分解:
(1)
(2)
(3)
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据分解因式的意义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式;进行作答即可.
【详解】
解:A、a(a-3)=a2-3a,属于整式乘法,不符合题意;
B、(a+3)2=a2+6a+9,属于整式乘法,不符合题意;
C、6a2+1=a2(6+)不是因式分解,不符合题意;
D、a2-9=(a+3)(a3)属于因式分解,符合题意;
故选:D
【点睛】
本题考查了因式分解的意义,属于基础题,解答本题的关键是熟练掌握因式分解的定义与形式.
2、B
【解析】
【分析】
根据因式分解的定义:把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,进行求解即可.
【详解】
解:A、,不是整式积的形式,不是因式分解,不符而合题意;
B、,是因式分解,符合题意;
C、,不是乘积的形式,不是因式分解,不符合题意;
D、,不是乘积的形式,不是因式分解,不符合题意;
故选B.
【点睛】
本题主要考查了因式分解的定义,熟知定义是解题的关键.
3、C
【解析】
【分析】
根据因式分解的定义判断即可.
【详解】
解:因式分解即把一个多项式化成几个整式的积的形式.
A. ,不是几个整式的积的形式,A选项不是因式分解;
B. ,不是几个整式的积的形式,B选项不是因式分解
C. ,符合因式分解的定义,C是因式分解.
D. ,不是几个整式的积的形式,D选项不是因式分解;
故选C
【点睛】
本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式的变形叫因式分解,等号的左边是一个多项式,右边是几个整式的积,正确理解因式分解的定义是解题的关键.
4、B
【解析】
【分析】
平方差公式:,根据平方差公式逐一分析可得答案.
【详解】
解:a2+b2不能用平方差公式分解因式,故(1)不符合题意;
x2-y2能用平方差公式分解因式,故(2)符合题意;
-m2+n2能用平方差公式分解因式,故(3)符合题意;
-b2-a2不能用平方差公式分解因式,故(4)不符合题意;
-a6+4能用平方差公式分解因式,故(5)符合题意;
所以能用平方差公式分解的因式有3个,
故选B
【点睛】
本题考查的是利用平方差公式分解因式,掌握“”是解本题的关键.
5、D
【解析】
【分析】
根据因式分解的定义严格判断即可.
【详解】
∵+1≠a(a+1)
∴A分解不正确;
∵,不是因式分解,
∴B不符合题意;
∵(a﹣2)(a+3)+1含有加法运算,
∴C不符合题意;
∵,
∴D分解正确;
故选D.
【点睛】
本题考查了因式分解,即把一个多项式写成几个因式的积,熟练进行因式分解是解题的关键.
6、A
【解析】
【分析】
先提公因式,再根据平方差公式因式分解即可.
【详解】
解:x2y﹣9y
故选A
【点睛】
本题考查了综合提公因式法和公式法分解因式,掌握因式分解的方法是解题的关键.
7、D
【解析】
【分析】
根据完全平方公式法分解因式,即可求解.
【详解】
解:A、不能用完全平方公式因式分解,故本选项不符合题意;
B、不能用完全平方公式因式分解,故本选项不符合题意;
C、不能用完全平方公式因式分解,故本选项不符合题意;
D、能用完全平方公式因式分解,故本选项符合题意;
故选:D
【点睛】
本题主要考查了完全平方公式法分解因式,熟练掌握 是解题的关键.
8、C
【解析】
【分析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义即可求解.
【详解】
解:A、16m2-4=4(4 m2-1)=4(m+1)(m-1),故该选项错误;
B、m4-1=(m2+1)(m2-1)=(m+1)(m-1)(m2+1),故该选项错误;
C、m2-6m+9=(m-3)2,故该选项正确;
D、1-a2=(a+1)(1-a),故该选项错误;
故选:C.
【点睛】
本题考查了因式分解的意义,属于基础题,关键是掌握因式分解的定义.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
9、B
【解析】
【分析】
根据因式分解的定义“把一个多项式化成几个整式的积的形式叫做因式分解”进行解答即可得.
【详解】
解:A、,不是因式分解,选项说法错误,不符合题意;
B、,是因式分解,选项说法正确,符合题意;
C、,不是因式分解,选项说法错误,不符合题意;
D、左、右不相等,选项说法错误,不符合题意;
故选B.
【点睛】
本题考查了因式分解,解题的关键是熟记因式分解的定义.
10、B
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.
【详解】
解:A、是整式的乘法,不是因式分解,故此选项不符合题意;
B、(x+y)2﹣x2=2xy+y2=y(2x+y),把一个多项式转化成几个整式乘积的形式,是因式分解,故此选项符合题意;
C、3mx2﹣2nx+x=x(3mx﹣2n+1),故此选项不符合题意;
D、没把一个多项式转化成几个整式乘积的形式,不是因式分解,故此选项不符合题意.
故选:B.
【点睛】
本题考查了因式分解的定义.严格按照因式分解的定义去验证每个选项是正确解答本题的关键.
二、填空题
1、0.36##925
【解析】
【分析】
x+y=0.34①,x+3y=0.86②,由①+②x+2y=4,把所求代数式根据完全平方公式因式分解,再代入计算即可.
【详解】
解:x+y=0.34①,x+3y=0.86②,
由①+②可得2x+4y=1.2,
即x+2y=0.6,
∴x2+4xy+4y2=(x+2y)2=0.62=0.36.
故答案为:0.36.
【点睛】
本题考查了完全平方公式进行因式分解,熟练掌握a2±2ab+b2=(a±b)2是解答本题的关键.
2、
【解析】
【分析】
综合利用提公因式法和完全平方公式进行因式分解即可得.
【详解】
解:原式
,
故答案为:.
【点睛】
本题考查了因式分解,熟练掌握因式分解的方法是解题关键.
3、
【解析】
【分析】
利用平方差公式分解得到结果,即可做出判断.
【详解】
解:
=
=
故答案为:
【点睛】
此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.
4、
【解析】
【分析】
先提公因式再根据平方差公式因式分解即可
【详解】
解:
故答案为:
【点睛】
本题考查了提公因式和公式法因式分解,掌握因式分解的方法是解题的关键.
5、±1
【解析】
【分析】
先把提取公因式,根据,求出的值,再根据,求出的值,即可得出的值.
【详解】
解:,
,
,
,
,
;
故答案为:.
【点睛】
此题考查了因式分解的应用,解决此类问题要整体观察,根据具体情况综合应用相关公式进行整体代入是解决这类问题的基本思想.
三、解答题
1、解:原式=5x(x2﹣4xy+4y2)=5x(x﹣2y)
【点睛】
本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.也考查了整式的混合运算.
2.(1)40,12
(2)4
【解析】
【分析】
(1)根据定义解答即可;
(2)根据b是a的十字点,写出a的表达式,因为a能被(b-1)整除,所以对表达式进行变形,得到(b-1)能整除2,求出b的值,进而得到a的值.
(1)
十字点为7的十字数a=(7+1)(7﹣2)=8×5=40,
∵130=(12+1)(12﹣2)=13×10,
∴130的十字点为12.
故答案为:40,12;
(2)
∵b是a的十字点,
∴a=(b+1)(b﹣2)(b>2且为正整数),
∴a=(b﹣1+2)(b﹣1﹣1)=(b﹣1)2+(b﹣1)﹣2,
∵a能被(b﹣1)整除,
∴(b﹣1)能整除2,
∴b﹣1=1或b﹣1=2,
∵b>2,
∴b=3,
∴a=(3+1)(3﹣2)=4.
【点睛】
本题考查了因式分解的应用,有一定的技巧性,解题的关键是看懂定义,根据题中的条件进行变形.
2、 (1)9810是“平方差数”,6361不是“平方差数”,理由见解析
(2)8157或6204或5250或5241
【解析】
【分析】
(1)直接根据“平方差数”的概念求解即可;
(2)设的千位数字为,个位数字为,则,由题意得,再分解正因数求解即可.
(1)
9810是“平方差数”,
∵,
∴9810是“平方差数”;
6361不是“平方差数”,
∵,
∴6361不是“平方差数”.
(2)
设的千位数字为,个位数字为,则,
由题意得,
即.
∵,且均为30的正因数,
∴将30分解为或或.
①,
解得,即;
②,
解得,即;
③,
解得,即;
解得,即.
∴或6204或5250或5241
【点睛】
本题考查了因式分解的应用,新定义下的阅读理解,解决问题的关键是找到等量关系.
3、 (1)①④
(2)①;②
【解析】
【分析】
(1)神奇对称式是指任意交换两个字母的位置,式子的值都不变的代数式;由定义可知,交换①②③中④中、、的位置,若值不变则符合题意.
(2)①将代入中求得的值,代入求解即可.②将代入中求得的值,由求出的取值范围;将进行配方得将的最小值代入即可.
(1)
解:将①②③中交换位置可得
①,符合题意;
②,不符合题意;
③,不符合题意;
④交换的位置,同理交换其他两个仍成立,符合题意;
故答案为:①④.
(2)
解:①
或
代入得
故答案为:.
②,
有
或
∴神奇对称式的最小值为.
【点睛】
本题考查了因式分解,完全平方公式,不等式等知识.解题的关键在于因式分解得到m、n的关系,不等式求出代数式m+n的取值范围,配完全平方表示出所求代数式的形式.
4、(1);(2).
【解析】
【分析】
(1)提取公因式,进行因式分解;
(2)提取公因式后,再利用平方差公式进行因式分解.
【详解】
解:(1);
(2),
.
【点睛】
本题考查了因式分解,解题的关键是掌握提取公因式及公式法进行因式分解.
5、 (1)2a(a2+3b);
(2)5(x+y)(x﹣y);
(3)﹣3(x﹣y)2.
【解析】
【分析】
(1)直接提公因式2a即可;
(2)先提公因式,再利用平方差公式即可;
(3)先提公因式,再利用完全平方公式即可.
(1)
解:=2a(a2+3b);
(2)
解:(2)原式=5(x2﹣y2)
=5(x+y)(x﹣y);
(3)
解:(3)原式=﹣3(x2﹣2xy+y2)
=﹣3(x﹣y)2.
【点睛】
本题考查提公因式法、公式法分解因式,掌握平方差公式、完全平方公式的结构特征是正确应用的前提.
相关试卷
这是一份数学第十一章 因式分解综合与测试同步练习题,共15页。试卷主要包含了如果x2+kx﹣10=,已知a2,若a等内容,欢迎下载使用。
这是一份初中第十一章 因式分解综合与测试同步训练题,共18页。试卷主要包含了下列多项式,若a等内容,欢迎下载使用。
这是一份2021学年第十一章 因式分解综合与测试课后作业题,共16页。试卷主要包含了下列各式因式分解正确的是,下列因式分解正确的是.等内容,欢迎下载使用。