![2022年冀教版七年级数学下册第十一章 因式分解同步训练试卷(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12719400/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年冀教版七年级数学下册第十一章 因式分解同步训练试卷(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12719400/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年冀教版七年级数学下册第十一章 因式分解同步训练试卷(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12719400/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021学年第十一章 因式分解综合与测试同步测试题
展开
这是一份2021学年第十一章 因式分解综合与测试同步测试题,共19页。试卷主要包含了下列因式分解错误的是,当n为自然数时,等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式从左到右的变形中,是因式分解的为( )A.x(a﹣b)=ax﹣bx B.x2﹣3x+1=x(x﹣3)+1C.x2﹣4=(x+2)(x﹣2) D.m+1=x(1+)2、若、、为一个三角形的三边长,则式子的值( )A.一定为正数 B.一定为负数 C.可能是正数,也可能是负数 D.可能为03、下列等式从左到右的变形,属于因式分解的是( )A. ﹣2x﹣1= B.(a+b)(a﹣b)=C.﹣4x+4= D.﹣1=4、下列从左边到右边的变形中,是因式分解的是( )A. B.C. D.5、下列因式分解错误的是( )A.3x-3y=3(x-y) B.x2-4=(x+2)(x-2)C.x2+6x-9=(x+9)2 D.-x2-x+2=-(x-1)(x+2)6、可以被24和31之间某三个整数整除,这三个数是( )A.25,26,27 B.26,27,28 C.27,28,29 D.28,29,307、下列各式中能用平方差公式计算的是( )A.(x+y)(y﹣x) B.(x+y)(y+x)C.(x+y)(﹣y﹣x) D.(x﹣y)(y﹣x)8、当n为自然数时,(n+1)2﹣(n﹣3)2一定能( )A.被5整除 B.被6整除 C.被7整除 D.被8整除9、下列从左到右的变形属于因式分解的是( )A.x2+2x+1=x(x+2)+1 B.﹣7ab2c3=﹣abc•7bc2C.m(m+3)=m2+3m D.2x2﹣5x=x(2x﹣5)10、下列各式中,正确的因式分解是( )A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:2x2-4x=_____.2、分解因式:______.3、若,,则的值为______.4、把多项式2a3﹣2a分解因式的结果是___.5、分解因式:______.三、解答题(5小题,每小题10分,共计50分)1、阅读理解:若满足,求的值.解:设,,则,,.迁移应用:(1)若满足,求的值;(2)如图,点,分别是正方形的边、上的点,满足,为常数,且,长方形的面积是,分别以、作正方形和正方形,求阴影部分的面积.2、我们知道,任意一个正整数c都可以进行这样的分解:c=a×b(.b是正整数,且a≤b),在c的所有这些分解中,如果a,b两因数之差的绝对值最小,我们就称a×b是c的最优分解并规定:M(c)=,例如9可以分解成1×9,3×3,因为9-1>3-3,所以3×3是9的最优分解,所以M(9)==1(1)求M(8);M(24);M[(c+1)2]的值;(2)如果一个两位正整数d(d=10x+y,x,y都是自然数,且1≤x≤y≤9),交换其个位上的数与十位上的数得到的新数加上原来的两位正整数所得的和为66,那么我们称这个数为“吉祥数”,求所有“吉祥数”中M(d)的最大值.3、仔细阅读下面例题,解答问题:例题:已知:二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n),则x2﹣4x+m=x2+(n+3)x+3n∴解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21.问题:仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是(x﹣5),求另一个因式以及k的值.4、计算:(1)分解因式:2a3b+4a2b2+2ab3;(2)化简:(m﹣n)2+(2m+n)(2m﹣n)﹣5m2.5、因式分解:(1) (2) -参考答案-一、单选题1、C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故A错误,不符合题意;B、没把一个多项式转化成几个整式积的形式,故B错误,不符合题意;C、把一个多项式转化成几个整式积的形式,故C正确,符合题意;D、等号左右两边式子不相等,故D错误,不符合题意;故选C【点睛】本题考查了因式分解的意义,明确因式分解的结果应是整式的积的形式是解题的关键.2、B【解析】【分析】先分解因式,再根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.【详解】解:原式=(a-c+b)(a-c-b),∵两边之和大于第三边,两边之差小于第三边,∴a-c+b>0,a-c-b<0,∵两数相乘,异号得负,∴代数式的值小于0.故选:B.【点睛】本题利用了因式分解,以及三角形中三边的关系:在三角形中,任意两边之和>第三边,任意两边之差<第三边.3、C【解析】【分析】根据因式分解的定义和方法逐一判断即可.【详解】∵=﹣2x+1≠﹣2x﹣1,∴A不是因式分解,不符合题意;∵(a+b)(a﹣b)=不符合因式分解的定义,∴B不是因式分解,不符合题意;∵﹣4x+4=,符合因式分解的定义,∴C是因式分解,符合题意;∵﹣1≠,不符合因式分解的定义,∴D不是因式分解,不符合题意;故选C.【点睛】本题考查了因式分解的定义即把一个多项式分成几个因式的积的形式,熟练掌握因式分解的实质是恒等变形是解题的关键.4、A【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:A.是因式分解,故本选项符合题意;B.等式的左边不是多项式,所以不是因式分解,故本选项不合题意; C.等式的右边不是几个整式的积的形式,所以不是因式分解,故本选项不合题意;D.等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;故选:A.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.5、C【解析】【分析】提取公因式判断A,根据平方差公式和完全平方公式分解因式判断B,C,D即可.【详解】解:显然对于A,B,D正确,不乖合题意,对于C:右边≠左边,故C错误,符合题意;故选:C.【点睛】本题考查了因式分解,熟练掌因式分解的方法是解题的关键.6、B【解析】【分析】先提取公因式27,再逐步利用平方差公式分解因式,即可得到答案.【详解】解: 所以可以被26,27,28三个整数整除,故选B【点睛】本题考查的是利用平方差公式分解因式,掌握平方差公式的特点并灵活应用是解本题的关键.7、A【解析】【分析】能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反,对各选项分析判断后利用排除法.【详解】解:A、(x+y)(y﹣x)=不符合平方差公式的特点,故本选项符合题意;B、(x+y)(y+x),不符合平方差公式的特点,不能用平方差公式计算,故本选项不合题意;C、(x+y)(﹣y﹣x)不符合平方差公式的特点,不能用平方差公式计算,故本选项不符合题意;D、(x﹣y)(y﹣x)不符合平方差公式的特点,不能用平方差公式计算,故本选项不符合题意;故选A.【点睛】本题考查的是应用平方差公式进行计算的能力,掌握平方差公式的结构特征是正确解题的关键.8、D【解析】【分析】先把(n+1)2﹣(n﹣3)2分解因式可得结果为:从而可得答案.【详解】解: (n+1)2﹣(n﹣3)2 n为自然数所以(n+1)2﹣(n﹣3)2一定能被8整除,故选D【点睛】本题考查的是利用平方差公式分解因式,掌握“”是解题的关键.9、D【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.由定义判断即可.【详解】解:A.x2+2x+1=(x+1)2,故A不符合题意;B.-7ab2c3是单项式,不存在因式分解,故B不符合题意;C.m(m+3)=m2+3m是单项式乘多项式,故C不符合题意;D.2x2-5x=x(2x-5)是因式分解,故D符合题意;故选:D.【点睛】本题考查因式分解的意义,熟练掌握因式分解的定义,能够根据所给形式判断是否符合因式分解的变形是解题的关键.10、B【解析】【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案.【详解】解:.,故此选项不合题意;.,故此选项符合题意;.,故此选项不合题意;.,故此选项不合题意;故选:.【点睛】本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.二、填空题1、##【解析】【分析】根据提公因式法因式分解即可【详解】解:2x2-4x=故答案为:【点睛】本题考查了提公因式法因式分解,掌握因式分解的方法是解题的关键.2、【解析】【分析】用提公因式法即可分解因式.【详解】.故答案为:.【点睛】本题考查了提公因式法分解因式,因式分解的步骤一般是先考虑提公因式,其次考虑公式法.另外因式分解要进行到再也不能分解为止.3、±1【解析】【分析】先把提取公因式,根据,求出的值,再根据,求出的值,即可得出的值.【详解】解:,,,,,;故答案为:.【点睛】此题考查了因式分解的应用,解决此类问题要整体观察,根据具体情况综合应用相关公式进行整体代入是解决这类问题的基本思想.4、【解析】【分析】直接利用提取公因式法分解因式,进而利用平方差公式分解因式即可.【详解】解:2a3﹣2a= =;故答案为2a(a+1)(a-1)【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.5、m(m+1)(m-1)【解析】【分析】先提公因式,再用平方差公式法分解因式.【详解】故答案为m(m+1)(m-1).【点睛】本题考查了提公因式法和公式法分解因式,因式分解的步骤一般是:先考虑提公因式法,再考虑公式法,最后保证再也不能分解了.三、解答题1、 (1)-3(2)【解析】【分析】(1)根据题意设,,可得,,根据,代入计算即可得出答案;(2)设正方形的边长为,则,,可得,;利用题干中的方法可求得,利用阴影部分的面积等于正方形与正方形的面积之差即可求得结论.(1)解:设,,则:,.,...(2)解:设正方形的边长为,则,,.长方形的面积是,.,.,,. .【点睛】本题主要考查了因式分解的应用,完全平方公式的几何背景,本题是阅读型题目,利用换元的方法解答是解题的关键.2、(1);;1;(2);【解析】【分析】(1)根据c=a×b中,c的所有这些分解中,如果a,b两因数之差的绝对值最小,就称a×b是c的最优分解,因此M(8)==,M(24)==,M[(c+1)2]= ;(2)设这个两位正整数d交换其个位上的数与十位上的数得到的新数为d',则d+d'=(10x+y)+(10y+x)=11x+11y=11(x+y)=66,由于x,y都是自然数,且1≤x≤y≤9,所以满足条件的“吉祥数”有15、24、33所以M(15)=,M(24)==,M(33)=,所以所有“吉祥数”中M(d)的最大值为.【详解】解:(1)由题意得,M(8)==;M(24)==;M[(c+1)2]=;(2)设这个两位正整数d交换其个位上的数与十位上的数得到的新数为d',则d+d'=(10x+y)+(10y+x)=11x+11y=11(x+y)=66,∵x,y都是自然数,且1≤x≤y≤9,∴满足条件的“吉祥数”有15、24、33∴M(15)=,M(24)==,M(33)=,∵>>,∴所有“吉祥数”中M(d)的最大值为.【点睛】本题考查了分解因式的应用,根据示例进行分解因式是解题的关键.3、另一个因式为(2x+13),k的值为65.【解析】【分析】设另一个因式为(2x+a),根据题意列出等式,利用系数对应相等列出得到关于a和k的方程求解即可.【详解】解:设另一个因式为(2x+a),得2x2+3x﹣k=(x﹣5)(2x+a)则2x2+3x﹣k=2x2+(a﹣10)x﹣5a∴,解得:a=13,k=65.故另一个因式为(2x+13),k的值为65.【点睛】此题考查了因式分解和整式乘法的关系,解题的关键是根据题意设出另一个因式列出等式求解.4、 (1)(2)【解析】【分析】(1)根据提公因式法先提出,进而根据完全平方公式因式分解即可;(2)根据完全平方公式和平方差公式展开,进而合并同类项即可(1)解:原式(2)解:原式【点睛】本题考查了因式分解和整式的混合运算,掌握乘法公式是解题的关键.5、(1);(2)【解析】【分析】(1)先提取公因式 再利用平方差公式分解因式即可;(2)先计算整式的乘法运算,再利用完全平方公式分解因式即可.【详解】解:(1) (2)【点睛】本题考查的是综合提公因式与公式法分解因式,掌握“利用平方差公式与完全平方公式分解因式”是解本题的关键.
相关试卷
这是一份2020-2021学年第十一章 因式分解综合与测试当堂检测题,共16页。试卷主要包含了下列各式因式分解正确的是,当n为自然数时,等内容,欢迎下载使用。
这是一份2020-2021学年第十一章 因式分解综合与测试测试题,共15页。试卷主要包含了下列因式分解正确的是,下列运算错误的是,多项式分解因式的结果是等内容,欢迎下载使用。
这是一份冀教版七年级下册第十一章 因式分解综合与测试课后作业题,共17页。试卷主要包含了下列分解因式正确的是,多项式分解因式的结果是,把多项式分解因式,其结果是,下列因式分解错误的是等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)