冀教版七年级下册第十一章 因式分解综合与测试精练
展开
这是一份冀教版七年级下册第十一章 因式分解综合与测试精练,共17页。试卷主要包含了若a,下列因式分解中,正确的是,多项式分解因式的结果是等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式中,正确的因式分解是( )A.B.C.D.2、已知c<a<b<0,若M=|a(a﹣c)|,N=|b(a﹣c)|,则M与N的大小关系是( )A.M<N B.M=N C.M>N D.不能确定3、已知,,那么的值为( )A.3 B.5 C. D.4、若a、b、c为一个三角形的三边,则代数式(a-c)2-b2的值( )A.一定为正数 B.一定为负数C.为非负数 D.可能为正数,也可能为负数5、把多项式因式分解得,则常数,的值分别为( )A., B.,C., D.,6、下列等式中,从左往右的变形为因式分解的是( )A.a2﹣a﹣1=a(a﹣1﹣)B.(a﹣b)(a+b)=a2﹣b2C.m2﹣m﹣1=m(m﹣1)﹣1D.m(a﹣b)+n(b﹣a)=(m﹣n)(a﹣b)7、下列因式分解中,正确的是( )A. B.C. D.8、多项式分解因式的结果是( )A. B.C. D.9、已知a+b=2,a-b=3,则等于( )A.5 B.6 C.1 D.10、下列各式中,能用平方差公式分解因式的是( )A.﹣a2﹣b2 B.﹣a2+b2 C.a2+(﹣b)2 D.a3﹣ab3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:______.2、分解因式:25x2﹣16y2=_____.3、分解因式:______.4、因式分解:xy2﹣4x=_____;因式分解(a﹣b)2+4ab=_____.5、分解因式:______.三、解答题(5小题,每小题10分,共计50分)1、若一个正整数a可以表示为a=(b+1)(b-2),其中b为大于2的正整数,则称a为“十字数”,b为a的“十字点”.例如28=(6+1)×(6-2)=7×4.(1)“十字点”为7的“十字数”为 ;130的“十字点”为 ;(2)若b是a的“十字点”,且a能被(b-1)整除,其中b为大于2的正整数,求a.2、因式分解:9﹣x2+2xy﹣y2.3、因式分解(1)n2(m﹣2)﹣n(2﹣m)(2)(a2+4)2﹣16a2.4、分解因式:(1)﹣9x3y+6x2y2﹣xy3(2)(x2+4)2﹣16x25、已知,.求值:(1);(2). -参考答案-一、单选题1、B【解析】【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案.【详解】解:.,故此选项不合题意;.,故此选项符合题意;.,故此选项不合题意;.,故此选项不合题意;故选:.【点睛】本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.2、C【解析】【分析】方法一:根据整式的乘法与绝对值化简,得到M-N=(a﹣c)(b﹣a)>0,故可求解;方法二:根据题意可设c=-3,a=-2,b=-1,再求出M,N,故可比较求解.【详解】方法一:∵c<a<b<0,∴a-c>0,∴M=|a(a﹣c)|=- a(a﹣c)N=|b(a﹣c)|=- b(a﹣c)∴M-N=- a(a﹣c)-[- b(a﹣c)]= - a(a﹣c)+ b(a﹣c)=(a﹣c)(b﹣a)∵b-a>0,∴(a﹣c)(b﹣a)>0∴M>N方法二: ∵c<a<b<0,∴可设c=-3,a=-2,b=-1,∴M=|-2×(-2+3)|=2,N=|-1×(-2+3)|=1∴M>N故选C.【点睛】此题主要考查有理数的大小比较与因式分解得应用,解题的关键求出M-N=(a﹣c)(b﹣a)>0,再进行判断.3、D【解析】【分析】将多项式进行因式分解,再整体代入求解即可.【详解】解:,将,,代入可得:,故选:D.【点睛】本题考查因式分解,整体代入思想,能够熟练地将整式因式分解是解决此类题型的关键.4、B【解析】【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】解:∵a、b、c为一个三角形的三边,∴a-c+b>0,a-c-b<0,∴(a-c)2-b2=(a-c+b)(a-c-b)<0.∴代数式(a-c)2-b2的值一定为负数.故选:B.【点睛】本题考查了运用平方差公式因式分解,利用了三角形中三边的关系:在三角形中,任意两边之和大于第三边,任意两边之差小于第三边.5、A【解析】【分析】根据因式分解是恒等式,展开比较系数即可.【详解】∵=,∴=,∴n-2=5,m=-2n,∴n=7,m=-14,故选A.【点睛】本题考查了因式分解,正确理解因式分解的恒等性是解题的关键.6、D【解析】【分析】把一个多项式化为几个整式的乘积的形式叫因式分解,根据定义对各选项进行一一分析判断即可.【详解】A. a2﹣a﹣1=a(a﹣1﹣)∵从左往右的变形是乘积形式,但(a﹣1﹣)不是整式,故选项A不是因式分解;B. (a﹣b)(a+b)=a2﹣b2,从左往右的变形是多项式的乘法,故选项B不是因式分解;C. m2﹣m﹣1=m(m﹣1)﹣1,从左往右的变形不是整体的积的形式,故选项C不是因式分解;D.根据因式分解的定义可知 m(a﹣b)+n(b﹣a)=(m﹣n)(a﹣b)是因式分解,故选项D从左往右的变形是因式分解.故选D.【点睛】本题考查因式分解,掌握因式分解的特征从左往右的变形后各因式乘积,各因式必须为整式,各因式之间不有加减号是解题关键.7、D【解析】【分析】A、原式利用完全平方公式分解得到结果,即可作出判断;B、原式利用完全平方公式分解得到结果,即可作出判断;C、原式不能分解,不符合题意;D、原式利用平方差公式分解得到结果,即可作出判断.【详解】解:A、原式,不符合题意;B、原式,不符合题意;C、原式不能分解,不符合题意;D、原式,符合题意.故选:D.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.8、B【解析】【分析】先提取公因式a,再根据平方差公式进行二次分解.平方差公式:a2-b2=(a+b)(a-b).【详解】解:ax2-ay2=a(x2-y2)=a(x+y)(x-y).故选:B.【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.9、B【解析】【分析】根据平方差公式因式分解即可求解【详解】∵a+b=2,a-b=3,∴故选B【点睛】本题考查了根据平方差公式因式分解,掌握平方差公式是解题的关键.10、B【解析】【分析】能用平方差公式分解因式的式子必须是两项是平方项,符号为异号.【详解】解:A、两项的符号相同,不能用平方差公式分解因式;故此选项错误;B、,能用平方差公式分解因式,故此选项正确;C、两项的符号相同,不能用平方差公式分解因式,故此选项错误;D.提公因式后不是平方差形式,故不能用平方差公式因式分解,故此选项错误.故选B.【点睛】本题考查了平方差公式分解因式,熟记平方差公式结构两项式,异号,平方项(或变性后具备平方项)是解题的关键.二、填空题1、m(m+1)(m-1)【解析】【分析】先提公因式,再用平方差公式法分解因式.【详解】故答案为m(m+1)(m-1).【点睛】本题考查了提公因式法和公式法分解因式,因式分解的步骤一般是:先考虑提公因式法,再考虑公式法,最后保证再也不能分解了.2、##【解析】【分析】利用平方差公式计算即可.【详解】解:原式==,故答案为:.【点睛】本题考查了利用平方差公式分解因式,掌握平方差公式的特征是解题的关键.3、【解析】【分析】根据提取公因式法,提取公因式即可求解.【详解】解:,故答案为:.【点睛】本题考查了因式分解,解题的关键是熟练掌握提取公因式法.4、 x(y+2)(y-2)##x(y-2)(y+2) (b+a)2##(a+b)2【解析】【分析】原式提公因式x,再利用平方差公式分解即可;原式整理后,利用完全平方公式分解即可.【详解】解:xy2-4x=x(y2-4)=x(y+2)(y-2);(a-b)2+4ab=a2-2ab+b2+4ab=a2+2ab+b2=(a+b)2.故答案为:x(y+2)(y-2);(a+b)2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.分解因式时一定要分解彻底.5、【解析】【分析】首先提公因式3x,然后利用完全平方公式因式分解即可分解.【详解】解:.故答案为:.【点睛】本题考查了提公因式法与公式法分解因式,掌握因式分解的方法与步骤,熟记公式是解题关键.三、解答题1、解:原式=5x(x2﹣4xy+4y2)=5x(x﹣2y)【点睛】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.也考查了整式的混合运算.2.(1)40,12(2)4【解析】【分析】(1)根据定义解答即可;(2)根据b是a的十字点,写出a的表达式,因为a能被(b-1)整除,所以对表达式进行变形,得到(b-1)能整除2,求出b的值,进而得到a的值.(1)十字点为7的十字数a=(7+1)(7﹣2)=8×5=40,∵130=(12+1)(12﹣2)=13×10,∴130的十字点为12.故答案为:40,12;(2)∵b是a的十字点,∴a=(b+1)(b﹣2)(b>2且为正整数),∴a=(b﹣1+2)(b﹣1﹣1)=(b﹣1)2+(b﹣1)﹣2,∵a能被(b﹣1)整除,∴(b﹣1)能整除2,∴b﹣1=1或b﹣1=2,∵b>2,∴b=3,∴a=(3+1)(3﹣2)=4.【点睛】本题考查了因式分解的应用,有一定的技巧性,解题的关键是看懂定义,根据题中的条件进行变形.2、(3+x﹣y)(3﹣x+y)【解析】【分析】首先把多项式分为9和-(x2-2xy+y2),后一组利用完全平方公式分解因式,接着利用平方差公式即可分解因式.【详解】解:9-x2+2xy-y2=32-(x2-2xy+y2)=32-(x-y)2=(3+x-y)(3-x+y).【点睛】本题主要考查了利用分组分解法分解因式,解题的关键是把多项式分为9和-(x2-2xy+y2),然后利用公式法分解因式即可解决问题.3、(1)n(m﹣2)(n+1);(2)(a+2)2(a﹣2)2.【解析】【分析】(1)提取公因式,进行因式分解即可;(2)根据平方差公式以及完全平方公式因式分解即可.【详解】(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(a2+4)2﹣16a2=(a2+4)2﹣(4a)2=(a2+4a+4)(a2﹣4a+4)=(a+2)2(a﹣2)2【点睛】本题考查了因式分解,掌握提公因式法和公式法分解因式是解题的关键,注意分解要彻底.4、 (1)(2)【解析】【分析】(1)先提出公因式,再利用完全平方公式因式分解,即可求解;(2)先用平方差公式因式分解,再利用完全平方公式因式分解,即可求解.(1)解: ;(2)解: .【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法,并灵活选用合适的方法进行解答是解题的关键.5、(1);(2)【解析】【分析】(1)把两个等式相减,可得:再移项把等式的左边分解因式,结合 从而可得答案;(2)由可得:由,可得再把分解因式即可得到答案.【详解】解:(1) ,, 则 (2) , 【点睛】本题考查的是因式分解的应用,求解代数式的值,掌握“利用提公因式,平方差公式分解因式及整体代入法求解代数式的值”是解题的关键.
相关试卷
这是一份2021学年第十一章 因式分解综合与测试课后复习题,共17页。试卷主要包含了已知x,y满足,则的值为,已知实数x,y满足,下列分解因式正确的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第十一章 因式分解综合与测试巩固练习,共17页。试卷主要包含了已知x2+x﹣6=,下列多项式等内容,欢迎下载使用。
这是一份冀教版七年级下册第十一章 因式分解综合与测试同步达标检测题,共18页。试卷主要包含了下列因式分解正确的是,已知,,求代数式的值为,把多项式分解因式,其结果是,已知实数x,y满足等内容,欢迎下载使用。