数学冀教版第十一章 因式分解综合与测试练习
展开
这是一份数学冀教版第十一章 因式分解综合与测试练习,共16页。试卷主要包含了下列分解因式正确的是等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若a2=b+2,b2=a+2,(a≠b)则a2﹣b2﹣2b+2的值为( )A.﹣1 B.0 C.1 D.32、若a、b、c为一个三角形的三边,则代数式(a-c)2-b2的值( )A.一定为正数 B.一定为负数C.为非负数 D.可能为正数,也可能为负数3、下列多项式:(1)a2+b2;(2)x2-y2;(3)-m2+n2;(4)-b2-a2;(5)-a6+4,能用平方差公式分解的因式有( )A.2个 B.3个 C.4个 D.5个4、下列分解因式正确的是( )A. B.C. D.5、下列等式中,从左到右是因式分解的是( )A. B.C. D.6、下列各式中,能用完全平方公式分解因式的是( )A. B.C. D. 7、下列多项式不能用公式法因式分解的是( )A.a2+4a+4 B.a2﹣a+1 C.﹣a2﹣9 D.a2﹣18、下列式子从左到右的变形中,属于因式分解的是( )A. B.C. D.9、把多项式因式分解得,则常数,的值分别为( )A., B.,C., D.,10、如果x2+kx﹣10=(x﹣5)(x+2),则k应为( )A.﹣3 B.3 C.7 D.﹣7第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知a2+a-1=0,则a3+2a2+2021=________.2、因式分解:xy2﹣4x=_____;因式分解(a﹣b)2+4ab=_____.3、因式分解:______.4、在实数范围内因式分解:x2﹣6x+1=_____.5、因式分解:______.三、解答题(5小题,每小题10分,共计50分)1、把下列各式分解因式:(1)x2+3x﹣4;(2)a3b﹣ab;(3)3ax2﹣6axy+3ay2.2、因式分解:(x2+9)2﹣36x2.3、因式分解:(1);(2).4、因式分解:5、完成下列各题:(1)计算:① ②(2)因式分解:① ② -参考答案-一、单选题1、D【解析】【分析】由a2=b+2,b2=a+2,且a≠b,可得a+b=−1,将a2-b2-2b+2变形为(a+b)(a-b)−2b+2,再代入计算即可求解.【详解】解:∵a2=b+2,b2=a+2,且a≠b,∴a2−b2=b−a,即(a+b)(a-b)=b-a,∴a+b=−1,∴a2-b2-2b+2=(a+b)(a-b)−2b+2=b−a-2b+2=-(a+b)+2=1+2=3.故选:D.【点睛】本题考查了代数式求值,解题的关键是求得a+b=−1,将a2-b2-2b+2变形为(a+b)(a-b)−2b+2是解题的关键.2、B【解析】【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】解:∵a、b、c为一个三角形的三边,∴a-c+b>0,a-c-b<0,∴(a-c)2-b2=(a-c+b)(a-c-b)<0.∴代数式(a-c)2-b2的值一定为负数.故选:B.【点睛】本题考查了运用平方差公式因式分解,利用了三角形中三边的关系:在三角形中,任意两边之和大于第三边,任意两边之差小于第三边.3、B【解析】【分析】平方差公式:,根据平方差公式逐一分析可得答案.【详解】解:a2+b2不能用平方差公式分解因式,故(1)不符合题意;x2-y2能用平方差公式分解因式,故(2)符合题意;-m2+n2能用平方差公式分解因式,故(3)符合题意;-b2-a2不能用平方差公式分解因式,故(4)不符合题意;-a6+4能用平方差公式分解因式,故(5)符合题意;所以能用平方差公式分解的因式有3个,故选B【点睛】本题考查的是利用平方差公式分解因式,掌握“”是解本题的关键.4、C【解析】【分析】根据因式分解的方法逐个判断即可.【详解】解:A. ,原选项错误,不符合题意;B. ,原选项错误,不符合题意;C. ,正确,符合题意;D. ,原选项错误,不符合题意;故选:C.【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式法和公式法进行因式分解.5、B【解析】【分析】根据因式分解的定义:把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,进行求解即可.【详解】解:A、,不是整式积的形式,不是因式分解,不符而合题意;B、,是因式分解,符合题意;C、,不是乘积的形式,不是因式分解,不符合题意;D、,不是乘积的形式,不是因式分解,不符合题意;故选B.【点睛】本题主要考查了因式分解的定义,熟知定义是解题的关键.6、D【解析】【分析】根据完全平方公式法分解因式,即可求解.【详解】解:A、不能用完全平方公式因式分解,故本选项不符合题意;B、不能用完全平方公式因式分解,故本选项不符合题意;C、不能用完全平方公式因式分解,故本选项不符合题意;D、能用完全平方公式因式分解,故本选项符合题意;故选:D【点睛】本题主要考查了完全平方公式法分解因式,熟练掌握 是解题的关键.7、C【解析】【分析】直接利用完全平方公式以及平方差公式分别分解因式,进而得出答案.【详解】解:A中,故此选项不合题意;B中,故此选项不合题意;C中无法分解因式,故此选项符合题意;D中,故此选项不合题意;故选:C.【点睛】本题考查了利用乘法公式进行因式分解.解题的关键在于对完全平方公式和平方差公式的灵活运用.8、B【解析】【分析】把一个多项式化为几个整式的积的形式叫把这个多项式分解因式,根据定义逐一判断即可.【详解】解:是整式的乘法,故A不符合题意;是因式分解,故B符合题意;右边不是整式的积的形式,不是因式分解,故C不符合题意;右边不是整式的积的形式,不是因式分解,故D不符合题意;故选B【点睛】本题考查的是因式分解的定义,掌握“根据因式分解的定义判断变形是否是因式分解”是解本题的关键.9、A【解析】【分析】根据因式分解是恒等式,展开比较系数即可.【详解】∵=,∴=,∴n-2=5,m=-2n,∴n=7,m=-14,故选A.【点睛】本题考查了因式分解,正确理解因式分解的恒等性是解题的关键.10、A【解析】【分析】根据多项式乘以多项式把等号右边展开,即可得答案.【详解】解:(x-5)(x+2)=x2-3x-10,则k=-3,故选:A.【点睛】本题主要考查了因式分解,关键是掌握x2+(p+q)x+pq=(x+p)(x+q).二、填空题1、2022【解析】【分析】将已知条件变形为a2=1-a、a2+a=1,然后将代数式a3+2a2+2021进一步变形进行求解.【详解】解:∵a2+a-1=0,∴a2=1-a、a2+a=1,∴a3+2a2+2021,=a•a2+2(1-a)+2021,=a(1-a)+2-2a+2021,=a-a2-2a+2023,=-a2-a+2023,=-(a2+a)+2023,=-1+2023=2022.故答案为:2022【点睛】本题考查了求代数式的值,是一道涉及因式分解的计算题,考查了拆项法分 解因式的运用,提公因式法的运用.2、 x(y+2)(y-2)##x(y-2)(y+2) (b+a)2##(a+b)2【解析】【分析】原式提公因式x,再利用平方差公式分解即可;原式整理后,利用完全平方公式分解即可.【详解】解:xy2-4x=x(y2-4)=x(y+2)(y-2);(a-b)2+4ab=a2-2ab+b2+4ab=a2+2ab+b2=(a+b)2.故答案为:x(y+2)(y-2);(a+b)2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.分解因式时一定要分解彻底.3、【解析】【分析】先提公因式,再利用平方差公式即可;【详解】故答案为:.【点睛】本题考查提公因式法、公式法分解因式,掌握平方差公式的结构特征是正确应用的前提.4、【解析】【分析】将该多项式拆项为,然后用平方差公式进行因式分解.【详解】.故答案为:.【点睛】本题考查了因式分解,当要求在实数范围内进行因式分解时,分解的式子的结果一般要分到出现无理数为止.5、【解析】【分析】先提取公因式,再用完全平方公式分解即可.【详解】解:,=,=故答案为:.【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式和公式法进行因式分解.三、解答题1、 (1)(x+4)(x﹣1)(2)ab(a+1)(a﹣1)(3)3a(x﹣y)2【解析】【分析】(1)利用十字相乘法进行分解即可;(2)先提公因式,然后再利用平方差公式继续分解即可;(3)先提公因式,然后再利用完全平方公式继续分解即可;(1)解:x2+3x﹣4=(x+4)(x﹣1);(2)解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1);(3)解:3ax2﹣6axy+3ay2=3a(x2﹣2xy+y2)=3a(x﹣y)2;【点睛】本题考查了因式分解﹣十字相乘法,提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.2、【解析】【分析】利用平方差公式和完全平方公式分解因式即可.【详解】解: .【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握完全平方公式和平方差公式.3、 (1)(2)【解析】【分析】(1)先提公因式,再逆用平方差公式进行因式分解;(2)先提公因式,再逆用完全平方公式进行因式分解.(1)解:;(2)解:.【点睛】本题主要考查综合运用公式法、提公因式法进行因式分解,熟练掌握提公因式法、公式法是解决本题的关键.4、【解析】【分析】根据题意综合运用提取公因式法和公式法进行因式分解即可得出答案.【详解】解:【点睛】本题考查因式分解,熟练掌握并运用提取公因式法和公式法进行因式分解是解题的关键.5、(1)①;②;(2)①;②【解析】【分析】(1)先算乘方,再算乘除,即可求解;(2)直接个那句多项式除以单项式法则计算,即可求解;(3)利用提出公因式法因式分解,即可求解;(4)利用平方差公式,即可求解.【详解】解:① ; ② ;(2)① ; ② .【点睛】本题主要考查了多项式除以单项式,多项式的因式分解,熟练掌握相关运算法则是解题的关键.
相关试卷
这是一份冀教版七年级下册第十一章 因式分解综合与测试当堂检测题,共16页。试卷主要包含了下列多项式中有因式x﹣1的是,下列因式分解正确的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第十一章 因式分解综合与测试同步测试题,共19页。试卷主要包含了下列分解因式正确的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第十一章 因式分解综合与测试当堂达标检测题,共17页。试卷主要包含了下列因式分解正确的是,下列因式分解中,正确的是,下列各式中,不能因式分解的是等内容,欢迎下载使用。