初中数学第十一章 因式分解综合与测试一课一练
展开冀教版七年级数学下册第十一章 因式分解必考点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列多项式中能用平方差公式分解因式的是( )
A. B. C. D.
2、若a2=b+2,b2=a+2,(a≠b)则a2﹣b2﹣2b+2的值为( )
A.﹣1 B.0 C.1 D.3
3、下列等式中,从左到右的变形是因式分解的是( )
A.m(a+b)=ma+mb B.x2+3x+2=(x+1)(x+2)
C.x2+xy﹣3=x(x+y)﹣3 D.
4、下列等式从左到右的变形,属于因式分解的是( )
A. ﹣2x﹣1= B.(a+b)(a﹣b)=
C.﹣4x+4= D.﹣1=
5、分解因式2a2(x-y)+2b2(y-x)的结果是( )
A.(2a2+2b2) (x-y) B.(2a2-2b2) (x-y)
C.2(a2-b2) (x-y) D.2(a-b)(a+b)(x-y)
6、下列各式从左到右的变形中,是因式分解且完全正确的是( )
A.(x+2)(x﹣2)=x2﹣4 B.x2﹣2x﹣3=x(x﹣2)﹣3
C.x2﹣4x+4=(x﹣2)2 D.x3﹣x=x(x2﹣1)
7、因式分解a2b﹣2ab+b正确的是( )
A.b(a2﹣2a) B.ab(a﹣2) C.b(a2﹣2a+1) D.b(a﹣1)2
8、小东是一位密码爱好者,在他的密码手册中有这样一条信息:、、、、、依次对应下列六个字:科、爱、勤、我、理、学,现将因式分解,其结果呈现的密码信息可能是( ).A.勤学 B.爱科学 C.我爱理科 D.我爱科学
9、因式分解x2y﹣9y的正确结果是( )
A.y(x+3)(x﹣3) B.y(x+9)(x﹣9) C.y(x2﹣9) D.y(x﹣3)2
10、把多项式因式分解得,则常数,的值分别为( )
A., B.,
C., D.,
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若实数满足,则___________.
2、已知:x+y=0.34,x+3y=0.86,则x2+4xy+4y2=_____.
3、已知a=,则a2﹣2a﹣3的值为_______.
4、因式分解:________.
5、单项式4m2n2与12m3n2的公因式是________.
三、解答题(5小题,每小题10分,共计50分)
1、因式分解:
2、因式分解:
(1)
(2)
3、因式分解:
(1); (2).
4、因式分解:
(1)
(2)
(3)
5、(1)计算:x(x2y2﹣xy)÷x2y;
(2)分解因式:3bx2+6bxy+3by2.
-参考答案-
一、单选题
1、A
【解析】
【分析】
利用平方差公式逐项进行判断,即可求解.
【详解】
解:A、,能用平方差公式分解因式,故本选项符合题意;
B、 ,不能用平方差公式分解因式,故本选项不符合题意 ;
C、 ,不能用平方差公式分解因式,故本选项不符合题意 ;
D、 ,不能用平方差公式分解因式,故本选项不符合题意 ;
故选:A
【点睛】
本题主要考查了用平方差公式因式分解,熟练掌握平方差公式 是解题的关键.
2、D
【解析】
【分析】
由a2=b+2,b2=a+2,且a≠b,可得a+b=−1,将a2-b2-2b+2变形为(a+b)(a-b)−2b+2,再代入计算即可求解.
【详解】
解:∵a2=b+2,b2=a+2,且a≠b,
∴a2−b2=b−a,
即(a+b)(a-b)=b-a,
∴a+b=−1,
∴a2-b2-2b+2
=(a+b)(a-b)−2b+2
=b−a-2b+2
=-(a+b)+2
=1+2
=3.
故选:D.
【点睛】
本题考查了代数式求值,解题的关键是求得a+b=−1,将a2-b2-2b+2变形为(a+b)(a-b)−2b+2是解题的关键.
3、B
【解析】
【分析】
将多项式写成几个整式的积的形式叫做因式分解,根据因式分解的定义依次判断.
【详解】
解:m(a+b)=ma+mb是整式乘法,故选项A不符合题意;
x2+3x+2=(x+1)(x+2)是因式分解,故选项B符合题意;
x2+xy﹣3=x(x+y)﹣3不是因式分解,故选项C不符合题意;
不是因式分解,故选项D不符合题意;
故选:B.
【点睛】
此题考查了因式分解的定义,熟记定义并正确理解是解题的关键.
4、C
【解析】
【分析】
根据因式分解的定义和方法逐一判断即可.
【详解】
∵=﹣2x+1≠﹣2x﹣1,
∴A不是因式分解,不符合题意;
∵(a+b)(a﹣b)=不符合因式分解的定义,
∴B不是因式分解,不符合题意;
∵﹣4x+4=,符合因式分解的定义,
∴C是因式分解,符合题意;
∵﹣1≠,不符合因式分解的定义,
∴D不是因式分解,不符合题意;
故选C.
【点睛】
本题考查了因式分解的定义即把一个多项式分成几个因式的积的形式,熟练掌握因式分解的实质是恒等变形是解题的关键.
5、D
【解析】
【分析】
根据提公因式法和平方差公式分解因式.
【详解】
解:2a2(x-y)+2b2(y-x)
=2a2(x-y)-2b2(x-y)
=(2a2-2b2)(x-y)
=2(a2-b2)(x-y)
=2(a-b)(a+b)(x-y).
故选:D.
【点睛】
此题考查了分解因式,正确掌握因式分解的方法:提公因式法和公式法(平方差公式、完全平方公式及十字相乘法)是解题的关键.
6、C
【解析】
【分析】
根据因式分解的定义逐项分析即可.
【详解】
A.(x+2)(x﹣2)=x2﹣4是乘法运算,故不符合题意;
B.x2﹣2x﹣3=x(x﹣2)﹣3的右边不是积的形式,故不符合题意;
C.x2﹣4x+4=(x﹣2)2是因式分解,符合题意;
D.x3﹣x=x(x2﹣1)=x(x+1)(x-1),原式分解不彻底,故不符合题意;
故选C.
【点睛】
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
7、D
【解析】
【分析】
先提取公因式,再用完全平方公式分解因式即可.
【详解】
解:a2b﹣2ab+b
=b(a2﹣2a+1)
=b(a﹣1)2.
故选:D.
【点睛】
本题考查的是因式分解,掌握“提公因式与公式法分解因式”是解本题的关键. 注意分解因式要彻底.
8、C
【解析】
【分析】
利用平方差公式,将多项式进行因式分解,即可求解.
【详解】
解:
∵、、、依次对应的字为:科、爱、我、理,
∴其结果呈现的密码信息可能是我爱理科.
故选:C
【点睛】
本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法是解题的关键.
9、A
【解析】
【分析】
先提公因式,再根据平方差公式因式分解即可.
【详解】
解:x2y﹣9y
故选A
【点睛】
本题考查了综合提公因式法和公式法分解因式,掌握因式分解的方法是解题的关键.
10、A
【解析】
【分析】
根据因式分解是恒等式,展开比较系数即可.
【详解】
∵=,
∴=,
∴n-2=5,m=-2n,
∴n=7,m=-14,
故选A.
【点睛】
本题考查了因式分解,正确理解因式分解的恒等性是解题的关键.
二、填空题
1、
【解析】
【分析】
把原式化为可得再利用非负数的性质求解从而可得答案.
【详解】
解: ,
而
解得:
故答案为:
【点睛】
本题考查的是非负数的性质,利用完全平方公式的变形求解代数式的值,因式分解的应用,熟练的运用完全平方公式是解本题的关键.
2、0.36##925
【解析】
【分析】
x+y=0.34①,x+3y=0.86②,由①+②x+2y=4,把所求代数式根据完全平方公式因式分解,再代入计算即可.
【详解】
解:x+y=0.34①,x+3y=0.86②,
由①+②可得2x+4y=1.2,
即x+2y=0.6,
∴x2+4xy+4y2=(x+2y)2=0.62=0.36.
故答案为:0.36.
【点睛】
本题考查了完全平方公式进行因式分解,熟练掌握a2±2ab+b2=(a±b)2是解答本题的关键.
3、-2
【解析】
【分析】
将所求算式因式分解,再将代入,整理,最后利用平方差公式计算即可.
【详解】
解: ,
将代入得:
.
故答案为:-2.
【点睛】
本题考查因式分解,代数式求值以及平方差公式.利用整体代入的思想是解答本题的关键.
4、m(m+1)(m﹣1).
【解析】
【分析】
原式提取m,再利用平方差公式分解即可.
【详解】
解:原式=m(m2﹣12)
=m(m+1)(m﹣1).
故答案为:m(m+1)(m﹣1).
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
5、4m2n2
【解析】
【分析】
找到系数的公共部分,再找到因式的公共部分即可.
【详解】
解:由于4和12的公因数是4,m2n2和m3n2的公共部分为m2n2,
所以4m2n2与12m3n2的公因式是4m2n2.
故答案为4m2n2.
【点睛】
本题主要考查公因式,熟练掌握如何去找公因式是解题的关键.
三、解答题
1、
【解析】
【分析】
根据题意综合运用提取公因式法和公式法进行因式分解即可得出答案.
【详解】
解:
【点睛】
本题考查因式分解,熟练掌握并运用提取公因式法和公式法进行因式分解是解题的关键.
2、 (1)
(2)-4(6a+b)( a+6b)
【解析】
【分析】
(1)用因式分解法分解即可;
(2)用平方差公式分解即可;
(1)
解:
=
=
=;
(2)
解:
=
=
=(5a-5b+7a+7b)(5a-5b-7a-7b)
=(12a+2b)( -2a-12b)
=-4(6a+b)( a+6b) .
【点睛】
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
3、(1);(2).
【解析】
【分析】
(1)提取公因式,进行因式分解;
(2)提取公因式后,再利用平方差公式进行因式分解.
【详解】
解:(1);
(2),
.
【点睛】
本题考查了因式分解,解题的关键是掌握提取公因式及公式法进行因式分解.
4、 (1)2a(a2+3b);
(2)5(x+y)(x﹣y);
(3)﹣3(x﹣y)2.
【解析】
【分析】
(1)直接提公因式2a即可;
(2)先提公因式,再利用平方差公式即可;
(3)先提公因式,再利用完全平方公式即可.
(1)
解:=2a(a2+3b);
(2)
解:(2)原式=5(x2﹣y2)
=5(x+y)(x﹣y);
(3)
解:(3)原式=﹣3(x2﹣2xy+y2)
=﹣3(x﹣y)2.
【点睛】
本题考查提公因式法、公式法分解因式,掌握平方差公式、完全平方公式的结构特征是正确应用的前提.
5、(1)xy-1;(2)3b(x+y)2.
【解析】
【分析】
(1)先计算单项式乘多项式,再计算多项式除以单项式,即可;
(2)先提取公因式3b,再利用完全平方公式继续分解即可.
【详解】
解:(1)x(x2y2﹣xy)÷x2y
=(x3y2-x2y)÷x2y
=x3y2÷x2y -x2y÷x2y
=xy-1;
(2)3bx2+6bxy+3by2
=3b(x2+2xy+y2)
=3b(x+y)2.
【点睛】
本题考查了单项式乘多项式,多项式除以单项式以及提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.
冀教版七年级下册第十一章 因式分解综合与测试当堂达标检测题: 这是一份冀教版七年级下册第十一章 因式分解综合与测试当堂达标检测题,共17页。试卷主要包含了下列因式分解正确的是,下列因式分解中,正确的是,下列各式中,不能因式分解的是等内容,欢迎下载使用。
冀教版七年级下册第十一章 因式分解综合与测试当堂检测题: 这是一份冀教版七年级下册第十一章 因式分解综合与测试当堂检测题,共14页。试卷主要包含了计算的值是,把代数式分解因式,正确的结果是,下列变形,属因式分解的是,对于有理数a,b,c,有等内容,欢迎下载使用。
初中数学冀教版七年级下册第十一章 因式分解综合与测试同步达标检测题: 这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试同步达标检测题,共17页。试卷主要包含了下列多项式,已知实数x,y满足等内容,欢迎下载使用。