初中数学冀教版七年级下册第八章 整式乘法综合与测试课后作业题
展开
这是一份初中数学冀教版七年级下册第八章 整式乘法综合与测试课后作业题,共19页。试卷主要包含了下列计算正确的是,已知,,则下列关系成立的是,已知,,c=,下列计算正确的是.A.B.等内容,欢迎下载使用。
冀教版七年级数学下册第八章整式的乘法同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、下列计算正确的是( )A.x2+x2=x4 B.(2x2)3=6x6C.3x2÷x=3x D.(x﹣1)2=x2﹣12、若三角形的底边为2n,高为2n﹣1,则此三角形的面积为( )A.4n2+2n B.4n2﹣1 C.2n2﹣n D.2n2﹣2n3、计算的结果( )A. B. C. D.4、下列计算正确的是 ( )A. B.C. D.5、已知,,则下列关系成立的是( )A.m+1=5n B.n=2m C.m+1=n D.2m=5+n6、据国家卫健委数据显示,截至2022年1月4日,各地累计报告接种新冠病毒疫苗约2863560000剂( )A.2.86356×109 B.2.86356×1010C.0.286356×1010 D.0.286356×1097、影片《长津湖》表现了志愿军战士不惧强敌敢于战斗的精神,敢于胜利的英雄气概.电影上映不到两个月,含预售票房已近57亿元,数据57亿用科学记数法表示为( )A.57×108 B.5.7×1010 C.0.57×1010 D.5.7×1098、已知,,c=(0.8)﹣1,则a,b,c的大小关系是( )A.c>b>a B.a>c>b C.a>b>c D.c>a>b9、下列计算正确的是( ).A. B.C. D.10、下列运算正确的是( )A.a2+a4=a6 B.C.(﹣a2)•a4=a8 D.(a2b3c)2=a4b6c2第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、在第二届柔性电子国际学术大会(ICFE2019)上,中国柔性电子与智能技术全球研究中心研发团发布了两款厚度小于25微米(即0.000025米)的柔性芯片,极大促进了人—机—物三元融合,是融合实体、数字和生物世界的变革性力量.将0.000025用科学记数法表示应为______.2、如图,两个正方形的边长分别为a,b.若a+b=5,ab=5,则图中阴影部分的面积为_____.3、已知x2﹣4x﹣1=0,则代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2=_____.4、如图,四边形ABCD与EFGD都是长方形,点E、G分别在AD与CD上.若cm,长方形EFGD的周长为24cm,则图中阴影部分的面积为______.5、人类进入5G时代,科技竞争日趋激烈.据报道,我国已经能大面积生产14纳米的芯片,14纳米即为0.00000014米,将其用科学记数法表示为______米.三、解答题(5小题,每小题10分,共计50分)1、计算:.2、计算:(1)(2)(3)3、(1)将图1中的甲图从中间按如图方式剪开,经过重新拼接变换到图乙,比较图甲与图乙,写出得到的公式: ;(2)将图2中的甲图从中间按如图方式剪开,经过重新拼接变换到图乙,比较图甲与图乙,写出得到的公式: ;(3)根据图1、图2中得到的公式,解决下列问题:①计算: ;②若,求的值.4、计算:5、(1)在数学中,完全平方公式是比较熟悉的,例如.若,,则______;(2)如图1,线段AB上有一点C,以AC、CB为直角边在上方分别作等腰直角三角形ACE和CBF,已知,,的面积为6,设,,求与的面积之和;(3)如图2,两个正方形ABCD和EFGH重叠放置,两条边的交点分别为M、N.AB的延长线与FG交于点Q,CB的延长线与EF交于点P,已知,,阴影部分的两个正方形EPBM和BQGN的面积之和为60,则正方形ABCD和EFGH的重叠部分的长方形BMHN的面积为______. -参考答案-一、单选题1、C【解析】【分析】利用合并同类项的法则,积的乘方的法则,单项式除以单项式的法则,完全平方公式对各项进行运算即可.【详解】解:A、x2+x2=2x2,故A不符合题意;B、(2x2)3=8x6,故B不符合题意;C、3x2÷x=3x,故C符合题意;D、(x-1)2=x2-2x+1,故D不符合题意;故选:C.【点睛】本题主要考查整式的混合运算,解答的关键是对相应的运算法则的掌握.2、C【解析】【分析】根据三角形面积公式列式,然后利用单项式乘多项式的运算法则进行计算.【详解】解:三角形面积为×2n(2n−1)=2n2-n,故选:C.【点睛】本题考查单项式乘多项式的运算,理解三角形面积=×底×高,掌握单项式乘多项式的运算法则是解题关键.3、A【解析】【分析】利用幂的乘方计算即可求解.【详解】解:.故选:.【点睛】本题考查了幂的乘方,掌握(am)n=amn是解决本题的关键.4、C【解析】【分析】根据幂的乘方、积的乘方、单项式乘单项式、单项式乘多项式等知识,即可完成.【详解】A、,故计算错误;B、,故计算错误;C、,故计算正确;D、,故计算错误.故选:C【点睛】本题考查了幂的运算及整式的乘法,熟练掌握它们的运算法则是关键,但在单项式乘多项式中,千万不要漏乘.5、A【解析】【分析】利用积的乘方、幂的乘方把32n=6化成25n=6,2m=3化成2m+1=6,再比较求解即可.【详解】解:∵32n=6,∴25n=6,∵2m=3,∴2m×2=3×2,即2m+1=6,∴2m+1=25n,∴m+1=5n,故选:A.【点睛】本题主要考查了积的乘方、幂的乘方,关键是掌握计算法则,并能熟练应用.6、A【解析】【分析】用科学记数法表示较大的数时,一般形式为,其中,为整数.【详解】解:.故选A.【点睛】本题考查了科学记数法,科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原来的数,变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数,确定与的值是解题的关键.7、D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:57亿=5700000000=5.7×109.故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解决问题的关键.8、B【解析】【分析】直接利用负整数指数幂的性质以及零指数幂的性质分别化简,进而比较大小得出答案.【详解】解:∵a=()﹣2,b=()0=1,c=(0.8)﹣1,∴1,∴a>c>b.故选:B.【点睛】此题主要考查了负整数指数幂的性质以及零指数幂的性质,正确化简各数是解题关键.9、B【解析】【分析】分别利用合并同类项、同底数幂相除、积的乘方与幂的乘方、同底数幂相乘逐一分析即可.【详解】A. 不是同类项,不能合并 ,不正确,故选项A不符合题意;B. 计算正确,故选项B符合题意;C. ,计算不正确,故选项C不符合题意;D.,计算不正确,故选项D不符合题意.故选B.【点睛】本题考查整式的运算,掌握合并同类项、同底数幂相乘、积的乘方与幂的乘方、同底数幂相除的法则是解题的关键.10、D【解析】【分析】由题意合并同类项原则和积的乘方以及幂的乘方和负指数幂运算逐项进行运算判断即可.【详解】解:A. 无法合并同类项,故本选项运算错误;B. ,故本选项运算错误;C. (﹣a2)•a4=,故本选项运算错误;D. (a2b3c)2=a4b6c2,故本选项运算正确.故选:D.【点睛】本题考查整式加法和积的乘方以及幂的乘方和负指数幂运算,熟练掌握相关运算法则是解题的关键.二、填空题1、【解析】【详解】解:,故答案为:.【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成的形式,其中,为整数,这种记数的方法叫做科学记数法)是解题关键.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.2、2.5####【解析】【分析】先利用阴影部分的面积等于大的正方形的面积的一半减去三个三角形的面积得到阴影面积为:,再利用完全平方公式的变形求解面积即可.【详解】解: 两个正方形的边长分别为a,b, a+b=5,ab=5, 故答案为:【点睛】本题考查的是完全平方公式在几何图形中的应用,利用完全平方公式的变形求解代数式的值,掌握“”是解本题的关键.3、12【解析】【分析】化简代数式,将代数式表示成含有的形式,代值求解即可.【详解】解:将代入得代数式的值为12故答案为:12.【点睛】本题考查了完全平方公式、平方差公式以及代数式求值.解题的关键在于正确的化简代数式.4、45【解析】【分析】由面积关系列出关系式可求解.【详解】解:∵矩形EFGD的周长为24cm,∴DE+DG=12cm,∵CD=DG+CG,AD=DE+AE,AE=GC=3cm,∴阴影部分的面积=CD×AD-DE×DG=(DG+3)(DE+3)-DE×DG=DG×DE+3DG+3DE+9-DE×DG=3(DG+DE)+9=36+9=45(cm2),故答案为:45.【点睛】本题考查了整式混合运算的应用,利用面积和差关系列出关系式是解题的关键.5、【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000014=1.4×10−8,故答案为:1.4×10−8.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.三、解答题1、2.【解析】【分析】先计算零指数幂、负整数指数幂、算术平方根,再计算加减法即可得.【详解】解:原式.【点睛】本题考查了零指数幂、负整数指数幂、算术平方根等知识点,熟练掌握各运算法则是解题关键.2、 (1)-9(2)(3)【解析】【分析】(1)原式根据有理数的乘方、负整数指数幂和零次幂的运算法则化简各数后再进行加减运算即可得到答案;(2)原式先根据积的乘方和幂的乘方运算法则、单项式的乘除法运算法则化简各项后再合并即可;(3)原式运用单项式乘以多项式与多项式乘以多项式运算法则将括号展开,再合并即可.(1)=-1+1-9=-9(2)==(3)==【点睛】本题考查了整式的混合运算,熟练掌握整式的混合运算法则是解答本题的关键.3、(1);(2);(3)①;②【解析】【分析】(1)根据图甲的面积大正方形的面积小正方形的面积,即可得出答案;(2)根据图甲的面积大正方形的面积小正方形的面积,即可得出答案;(3)①利用即可求解;②将即可求解.【详解】解:(1)图乙阴影部分的面积大正方形的面积小正方形的面积,图甲的面积,图乙阴影部分的面积图甲的面积,,故答案是:;(2)甲图长方形的长是:,宽是:,面积是:;乙图大正方形的边长是:,面积为:,中间的小正方形的边长为:,面积为:,,故答案是:;(3)①计算:,故答案是:;②,,,.【点睛】本题考查了平方差公式的几何背景,解题的关键是用不同的方法表示图形的面积.4、x4-8x2+16【解析】【分析】根据平方差公式和完全平方公式解答即可.【详解】解:原式=(x2-4)(x2-4)=(x2-4)2=x4-8x2+16.【点睛】本题考查了平方差公式和完全平方公式.掌握乘法的平方差公式和完全平方公式的特点,熟练运用平方差公式和完全平方公式是解决本题的关键.5、(1)13;(2);(3)22.【解析】【分析】(1)根据完全平方公式变形得出即可;(2)设,,根据等腰直角三角形ACE和CBF,得出AC=EC=a,BC=CF=b,根据,得出,,利用公式变形得出即可;(3)设BM=m,BN=n,根据S矩形BNHM=mn,S正方形EPBM+S正方形BQGN=m2+n2=60,根据四边形ABCD为正方形,AB=BC,列等式m+7=n+3,得出n-m=4,根据公式变形得出即可.【详解】解:(1),故答案为:13;(2)设,,∵等腰直角三角形ACE和CBF,∴AC=EC=a,BC=CF=b,∵,∴,∵S△ACF=,∴,S△ACE+S△CBF=,∵,∴S△ACE+S△CBF=;(3)设BM=m,BN=n,∵S矩形BNHM=mn,S正方形EPBM+S正方形BQGN=m2+n2=60,四边形ABCD为正方形,AB=BC,∴m+7=n+3,∴n-m=4,∵,∴,∴S矩形BNHM=mn=22.故答案为:22.【点睛】本题考查完全平方公式变形应用,掌握公式变形应用的方法,数形结合,识别出题者意图是解题的突破口.
相关试卷
这是一份初中数学冀教版七年级下册第八章 整式乘法综合与测试练习,共15页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。
这是一份2020-2021学年第八章 整式乘法综合与测试习题,共16页。试卷主要包含了已知,,则的值为,已知ax2+24x+b=,下列计算正确的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第八章 整式乘法综合与测试巩固练习,共18页。试卷主要包含了下列运算正确的是,的计算结果是,若,则的值是,下列计算正确的是,利用如图①所示的长为a等内容,欢迎下载使用。