数学七年级下册第七章 相交线与平行线综合与测试课后练习题
展开
这是一份数学七年级下册第七章 相交线与平行线综合与测试课后练习题,共22页。试卷主要包含了下列说法正确的有等内容,欢迎下载使用。
冀教版七年级数学下册第七章相交线与平行线综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、如图,直线AB与CD相交于点O,若,则等于( )A.40° B.60° C.70° D.80°2、如图,∠1=∠2,∠3=25°,则∠4等于( )A.165° B.155° C.145° D.135°3、如图,已知直线AD∥BC,BE平分∠ABC交直线DA于点E,若∠DAB=54°,则∠E等于( )A.25° B.27° C.29° D.45°4、下面的四个图形中,能够通过基本图形平移得到的图形有( )A.1个 B.2个 C.3个 D.4个5、下列各图中,∠1与∠2是对顶角的是( )A. B.C. D.6、如图,已知直线,相交于O,平分,,则的度数是( )A. B. C. D.7、下列说法正确的有( ) ①两点之间的所有连线中,线段最短;②相等的角叫对顶角;③过一点有且只有一条直线与已知直线平行;④若AC=BC,则点C是线段AB的中点; ⑤在同一平面内,经过一点有且只有一条直线与已知直线垂直.A.1个 B.2个 C.3个 D.4个8、如图,O为直线AB上一点,∠COB=36°12',则∠AOC的度数为( )A.164°12' B.136°12' C.143°88' D.143°48'9、如图,将军要从村庄A去村外的河边饮马,有三条路AB、AC、AD可走,将军沿着AB路线到的河边,他这样做的道理是( )A.两点之间,线段最短B.两点之间,直线最短C.两点确定一条直线D.直线外一点与直线上各点连接的所有线段中,垂线段最短10、如图,与交于点,与互余,,则的度数为( )A. B. C. D.第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、如图,过直线AB上一点O作射线OC,∠BOC=29°38′,OD平分∠AOC,则∠DOC的度数为 _____.2、两条平行直线被第三条直线所截,内错角相等.简称:两直线平行,内错角_________.如图,因为a∥b (已知) ,所以∠1=_____(两直线平行,内错角相等) . 3、同一平面内,两条直线相交有__________个交点,两条直线相交的特殊位置关系是__________.4、命题“a<2a”是 ___命题(填“真”或“假”).5、如图,给出下列条件:①;②;③;④.其中,能推出AD//BC的条件是 __.(填上所有符合条件的序号)三、解答题(5小题,每小题10分,共计50分)1、如图1,直线AC∥BD,直线AC、BD及直线AB把平面分成(1)、(2)、(3)、(4)、(5)、(6)六个部分.点P是其中的一个动点,连接PA、PB,观察∠APB、∠PAC、∠PBD三个角.规定:直线AC、BD、AB上的各点不属于(1)、(2)、(3)、(4)、(5)、(6)六个部分中的任何一个部分.(1)当动点P落在第(1)部分时,可得:∠APB=∠PAC+∠PBD,请阅读下面的解答过程,并在相应的括号内填注理由过点P作EF∥AC,如图2因为AC∥BD(已知),EF∥AC(所作),所以EF∥BD______.所以∠BPE=∠PBD______.同理∠APE=∠PAC.因此∠APE+∠BPE=∠PAC+∠PBD______,即∠APB=∠PAC+∠PBD.(2)当动点P落在第(2)部分时,∠APB、∠PAC、∠PBD之间的关系是怎样的?请直接写出∠APB、∠PAC、∠PBD之间满足的关系式,不必说明理由.(3)当动点P在第(3)部分时,∠APB、∠PAC、∠PBD之间的关系是怎样的?请直接写出相应的结论.(4)当动点P在第(4)部分时,∠APB、∠PAC、∠PBD之间的关系是怎样的?请直接写出相应的结论.2、如图,点O是直线AB上的一点,∠BOC:∠AOC=1:2,OD平分∠BOC,OE⊥OD于点O.(1)求∠BOC的度数;(2)试说明OE平分∠AOC.3、如图,直线AB,CD相交于点O,OE平分∠BOC,OF⊥CD.(1)若∠AOF=50°,求∠BOE的度数;(2)若∠BOD:∠BOE=1:4,求∠AOF的度数.4、如图,已知平面上有三个点A,B,C,请按要求画图,并回答问题:(1)画直线AB,射线CA;(2)延长AC到D,使得,连接BD;(3)过点B画,垂足为E;(4)通过测量可得,点B到直线AC的距离约为 cm.(精确到0.1cm) 5、如图,直线AB、CD相交于点O,OE平分∠BOC,∠FOE=90°,若∠AOD=70°,求∠AOF度数 -参考答案-一、单选题1、A【解析】【分析】根据对顶角的性质,可得∠1的度数.【详解】解:由对顶角相等,得∠1=∠2,又∠1+∠2=80°,∴∠1=40°.故选:A.【点睛】本题考查的是对顶角,掌握对顶角相等这一性质是解决此题关键.2、B【解析】【分析】设∠4的补角为,利用∠1=∠2求证,进而得到,最后即可求出∠4.【详解】解:设∠4的补角为,如下图所示:∠1=∠2,,,.故选:B.【点睛】本题主要是考查了平行线的性质与判定,熟练角相等,证明两直线平行,然后利用平行关系证明其他角相等,这是解决该题的关键.3、B【解析】【分析】根据两直线平行,内错角相等可求∠ABC=54°,再根据角平分线的性质可求∠EBC=27°,再根据两直线平行,内错角相等可求∠E.【详解】解:∵AD∥BC,∴∠ABC=∠DAB=54°,∠EBC=∠E,∵BE平分∠ABC,∴∠EBC=∠ABC=27°,∴∠E=27°.故选:B.【点睛】本题考查了平行线的性质,角平分线,关键是求出∠EBC=27°.4、B【解析】【分析】根据平移的性质,对逐个选项进行分析即可.【详解】解:第一个、第二个图不能由基本图形平移得到,第三个、第四个图可以由基本图形平移得到,故选:B.【点睛】本题主要考查了图形的平移,图形的平移只改变图形的位置,不改变图形的形状,大小,方向.学生比较难区分平移、旋转或翻转.5、D【解析】略6、C【解析】【分析】先根据角平分线的定义求得∠AOC的度数,再根据邻补角求得∠BOC的度数即可.【详解】解:∵OA平分∠EOC,∠EOC=100°,∴∠AOC=∠EOC=50°,∴∠BOC=180°﹣∠AOC=130°.故选:C.【点睛】本题考查角平分线的有关计算,邻补角.能正确识图是解题关键.7、B【解析】【分析】根据线段的性质,对顶角相等的性质,平行公理,对各小题分析判断即可得解.【详解】解:①两点之间的所有连线中,线段最短,正确;②相等的角不一定是对顶角,但对顶角相等,故本小题错误;③过直线外一点有且仅有一条直线与已知直线平行,故本小题错误;④若AC=BC,且A、B、C三点共线,则点C是线段AB的中点,否则不是,故本小题错误,⑤在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;所以,正确的结论有①⑤共2个.故选:B.【点睛】本题考查了平行公理,线段的性质,对顶角的判断,是基础题,熟记概念与性质是解题的关键.8、D【解析】【分析】根据邻补角及角度的运算可直接进行求解.【详解】解:由图可知:∠AOC+∠BOC=180°,∵∠COB=36°12',∴∠AOC=180°-∠BOC=143°48',故选D.【点睛】本题主要考查邻补角及角度的运算,熟练掌握邻补角及角度的运算是解题的关键.9、D【解析】【分析】根据垂线段最短即可完成.【详解】根据直线外一点与直线上各点连接的所有线段中,垂线段最短,可知D正确故选:D【点睛】本题考查了垂线的性质的简单应用,直线外一点与直线上各点连接的所有线段中,垂线段最短,掌握垂线段最短的性质并能运用于实际生活中是关键.10、B【解析】【分析】先由与互余,求解 再利用对顶角相等可得答案.【详解】解:与互余,,,,,故选:B.【点睛】本题考查的是互余的含义,角的和差关系,对顶角的性质,掌握“两个角互余的含义”是解本题的关键.二、填空题1、【解析】【分析】先根据邻补角互补求出∠AOC=150°22′,再由角平分线的定义求解即可.【详解】解:∵∠BOC=29°38′,∠AOC+∠BOC=180°,∴∠AOC=150°22′,∵OD平分∠AOC,∴,故答案为:.【点睛】本题主要考查了邻补角互补,角度制的计算,角平分线的定义,熟知相关知识是解题的关键.2、 相等 ∠2【解析】略3、 1 垂直【解析】略4、假【解析】【分析】根据实数比较大小的原则求解即可.【详解】当a为负数时,,∴命题“a<2a”是假命题.故答案为:假.【点睛】本题考查了命题的真假判定,实数的比较大小,重点是掌握实数比较大小的运算法则.5、②④##④②【解析】【分析】利用平行线的判定定理依次判断.【详解】①,;②,;③,;④,.故答案为:②④.【点睛】此题考查了平行线的判定定理,熟记平行线的判定定理并熟练应用是解题的关键.三、解答题1、 (1)平行于同一直线的两直线平行;两直线平行,内错角相等;等式性质;(2)∠APB+∠PAC+∠PBD=180°(3)∠PAC=∠APB+∠PBD(4)∠PAC+∠APB=∠PBD【解析】【分析】(1)根据平行公理、平行线的性质、等式的性质分别解答;(2)过点P作EF∥AC,证明EF∥BD,推出∠BPF+∠PBD=180°,同理∠APF+∠PAC=180°.由此得到结论∠APB+∠PAC+∠PBD=360°;(3)过点P作EF∥AC,如图4,根据平行线的性质可得出∠PAC=∠APB+∠PBD;(4)过点P作EF∥AC,如图5,根据平行线的性质可得出∠PAC+∠APB=∠PBD.(1)解:过点P作EF∥AC,如图2因为AC∥BD(已知),EF∥AC(所作),所以EF∥BD平行于同一直线的两直线平行.所以∠BPE=∠PBD两直线平行,内错角相等.同理∠APE=∠PAC.因此∠APE+∠BPE=∠PAC+∠PBD等式的性质,即∠APB=∠PAC+∠PBD.故答案为:平行于同一直线的两直线平行;两直线平行,内错角相等;等式性质;(2)解:过点P作EF∥AC,如图(3),因为AC∥BD,EF∥AC,所以EF∥BD.所以∠BPF+∠PBD=180°.同理∠APF+∠PAC=180°.因此∠APF+∠BPF+∠PAC+∠PBD=360°,即∠APB+∠PAC+∠PBD=360°.(3)解:过点P作EF ∥ AC,如图4,∵AC∥BD,EF∥AC,∴EF∥BD.∴∠MPF=∠PBD.∠APF+∠PAC=180°.∵∠APF+∠MPF+∠APB =180°,∴∠PAC=∠APB+∠PBD;(4)解:过点P作EF ∥ AC,如图5,∵AC∥BD,EF∥AC,∴EF∥BD.∴∠MPF=∠PBD.∠APN=∠PAC.∵∠MPF=∠NPB =∠APB+∠APN,∴∠PAC+∠APB=∠PBD.【点睛】本题考查了平行公理,平行线的性质以及数形结合思想的应用,是基础知识比较简单.2、 (1)∠BOC=60°(2)见解析【解析】【分析】(1)根据∠AOB是平角,∠BOC:∠AOC=1:2即可求解;(2)由角平分线的定义和相加等于90°的两个角互余、等角的余角相等来分析即可.【详解】(1)∵∠AOB=∠BOC+∠AOC=180°,又∠BOC:∠AOC=1:2,∴∠AOC=2∠BOC,∴∠BOC+2∠BOC=180°,∴∠BOC=60°;(2)∵OD平分∠BOC,∴∠BOD=∠DOC,∵∠DOC+∠COE=90°,∠AOB是平角,∴∠AOE+∠BOD=90°,∴∠AOE=∠COE即OE平分∠AOC.【点睛】本题考查了角的计算和角平分线的定义,垂直的定义,正确理解角平分线的定义,余角的性质以及平角的定义是解题的关键.3、 (1)∠BOE=70°;(2)∠AOF=70°.【解析】【分析】(1)根据补角,余角的关系,可得∠BOC,根据角平分线的定义,可得答案;(2)根据邻补角,可得关于x的方程,根据解方程,可得∠AOC,再根据余角的定义,可得答案.(1)解:∵OF⊥CD,∴∠COF=90°,∵∠AOF=50°,∴∠AOC=40°,∴∠BOC=140°,∵OE平分∠BOC,∴∠BOE=∠BOC=70°;(2)解:∠BOD:∠BOE=1:4,设∠BOD=∠AOC=x,∠BOE=∠COE=4x.∵∠AOC与∠BOC是邻补角,∴∠AOC+∠BOC=180°,即x+4x+4x=180°,解得x=20°.∵∠AOC与∠AOF互为余角,∴∠AOF=90°-∠AOC=90°-20°=70°.【点睛】本题考查了对顶角、邻补角,利用邻补角的定义、余角的定义是解题关键.4、(1)见解析;(2)见解析;(3)见解析;(4)3.1【解析】【分析】(1)根据直线、射线的定义,即可求解;(2)根据题意,先延长AC到D,使得,再连接BD,即可求解; (3)根据题意,过点B画,垂足为E,即可求解; (4)根据题意得:点B到直线AC的距离为 的长,测量 的长,即可求解.【详解】解:(1)如图所示:(2)如图所示:(3)如图所示:(4)根据题意得:点B到直线AC的距离为 的长,所以通过测量可得,点B到直线AC的距离约为3.1厘米.【点睛】本题主要考查了直线、射线、线段的定义,点到直线的距离,熟练掌握直线是两端都没有端点、可以向两端无限延伸、不可测量长度的线;射线是只有一个端点,它从一个端点向另一边无限延长不可测量长度的线;直线外一点到直线的垂线段的长度叫做点到直线的距离是解题的关键.5、55°【解析】【分析】由题意利用对顶角可得∠COB=∠AOD=70°,再根据角平分线性质可得∠EOB=∠EOC=35°,进而利用邻补角的性质得出∠AOF=180°-∠EOB-∠FOE即可求得答案.【详解】解:∵∠AOD=70°,∴∠COB=∠AOD=70°,∵OE平分∠BOC,∴∠EOB=∠EOC=35°,∵∠FOE=90°,∴∠AOF=180°-∠EOB-∠FOE=55°.【点睛】本题考查角的运算,熟练掌握对顶角、邻补角的性质以及角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.
相关试卷
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试同步训练题,共21页。试卷主要包含了下列A,下列说法正确的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试同步训练题,共24页。试卷主要包含了下列说法正确的是,如图,直线b等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试达标测试,共21页。试卷主要包含了如图,下列条件中不能判定的是,有下列说法,如图,,交于点,,,则的度数是等内容,欢迎下载使用。